Lecture 13: Breadth-first Search
CSC2100 Data Structure

Yufei Tao

CSE department, CUHK

April 3, 2011
In this lecture, we will discuss *breadth-first search*. This is a very fundamental graph algorithm, which underlies the solutions to many graph problems.
1 Problem

2 Breadth-first search
 - Rationale
 - Pseudocode

3 Analysis
 - Running time
 - Access order
Problem (Reachability)

Given an undirected graph G and a vertex s in G, output all the vertices in G that can be reached from s.

Example

Answer: $\{s, a, b, c, d, e, f, g\}$.
BFS overview

- The *breadth-first search* (BFS) algorithm traverses all the vertices reachable from *s*.
- It outputs those vertices in *ascending* order of their distances to *s*.
 - Namely, first vertices that are one-hop away from *s*, then vertices that are 2-hops away, etc.
- Every vertex (reachable from *s*) will be output exactly once.
Let us get an idea of the algorithm from an example.

- At the beginning, color all the vertices white (which means “not touched yet”).
- Initiate an empty queue Q (a linked list with the first-in-first-out property).
Output s, and color it **black** (which means “done”).

- Insert all the neighbors of s into Q, and color them **grey** (which means “in the queue”). Now $Q = \{a, b, c\}$.
Breadth-first search

Analysis Summary

Rationale

BFS example (cont.)

- Pop out the first vertex a of Q.
- Output a and color it black.
- Insert all the **white neighbors** of a into Q, and color them **grey**. Only d is en-queued; and $Q = \{b, c, d\}$.

Example

- Diagram showing the BFS with vertices $s, a, b, c, d, e, f, g, h, i$ and edges connecting them. The vertices are color-coded to illustrate the black, grey, and white states as per the BFS algorithm.
The rest of the algorithm simply repeats the above until \(Q \) is empty. Let us see one more step:

- Pop out the first vertex \(b \) of \(Q \).
- Output \(b \) and color it black.
- Insert all the white neighbors of \(b \) into \(Q \), and color them grey. \(e \) and \(f \) are en-queued; and \(Q = \{c, d, e, f\} \).
Algorithm $BFS(s)$
1. color all the vertices white
2. initialize an empty queue Q
3. for each neighbor v of s
4. insert v in Q; $color[v] = \text{grey}$
5. output s; $color[s] = \text{black}$
6. while Q is not empty
7. $u = \text{top of } Q$; remove u from Q
8. for each neighbor v of u
9. if $color[v] = \text{white}$
10. insert v in Q; $color[v] = \text{grey}$
11. output u; $color[u] = \text{black}$
Let us assume that the input graph G is stored with an adjacency list.

- Coloring all vertices white (at the beginning of BFS) takes $O(|V|)$ time, where V is the set of vertices in G.
- Then, every edge in E (the set of edges in G) is processed at most twice.

Therefore, the total running time is $O(|V| + |E|)$.

Proof of the access order

We will prove that BFS outputs the vertices in G (reachable from s) in ascending order of their distances from s.

- Let V_i ($i \geq 0$) be the set of vertices that are i-hops away from s.
- The next lemma essentially shows that BFS outputs all the vertices of V_i before outputting any vertex in V_{i+1}, for any possible i.
Lemma

For any i, when BFS finishes outputting all the vertices of V_i, Q contains all and only the vertices of V_{i+1}.

Proof

We prove the lemma by induction. The basic step with $i = 0$ is trivial, noticing that $V_0 = \{s\}$. Next, assuming that the lemma is correct up to $i \leq k$, we show its correctness for $i = k + 1$.

At the moment when all the vertices of V_k have been output, the inductive assumption implies:

- every vertex of V_{k+1} is in Q;
- Q does not have any other vertex;
- $V_0, ..., V_{k-1}$ have been output.
Proof (cont.)

It suffices to prove that when V_{k+1} has been output completely, the entire V_{k+2} is in Q, and Q does not have any other vertex. This is true from the following:

- Consider any $u \in V_{k+1}$. BFS en-queues only the white neighbors of u. All these neighbors must be in V_{k+2}.
- Any vertex in V_{k+2} must have at least a neighbor in V_{k+1}.

□
Problem
Breadth-first search

Analysis

Summary

Playback of this lecture:

- Breadth-first search.
- Running time $O(|V| + |E|)$.

Remark: BFS can be extended to work on directed graphs in a straightforward manner.