Further Discussions on Hashing

Yufei Tao’s Teaching Team

Review on Hash Table

* S=asetofnintegersin |1, U]
* Query: given an integer g, decide whetherg € §

* Main idea: divide S into a number m of disjoint
“buckets”

* Setm = 0O(n)

* Guarantees
» Space consumption: 0(n)
* Preprocessing cost: 0(n)
* Query cost: O(1) in expectation

Review on Hash Table

 Divide S into a number m of disjoint buckets:
* Choose a function h from [1, U] to [1, m]
* Foreachi € [1,m], create an empty linked list L;

* Foreachx € S:
* Compute h(x)
* Insert x into Ly (y)

* Important: choose a good hash function h

Review on Hash Table

* Construct a universal family
* Pick a prime number psuchthatp = mandp = U

* Choose an integer a from [1,p — 1] uniformly at
random

* Choose an integer 8 from [0,p — 1] uniformly at
random

* Define a hash function:
h(k) =1+ ((ak +) mod p) mod m

Example
e LetS ={19,36,63,53,14,9,70,26}

 We choosem = 10,p = 71, suppose that « and [are randomly chosen
to be 3 and 7, respectively

* h(k) =14+ (((3k+ 7)mod 71) mod 10)

L, [, NIL

fir > NIL

L - NIL

L, - NIL

Ls 19 » 36 63 53 9 70 26| —NIL
Le —— NIL

L, —— NIL

Ls L » NIL

Lg —» NIL

o 14| |—»NIL

Relationships between Hash Functions
and Query Costs

* Let H be a universal family.

 Given a function h € H and an integer q € [1, U]:
* Let cost(h, q) be the cost of finding g when h is the hash function used

query value
1 2 U
hq cost(hy,1) cost(hy,2) cost(hy, U)
h, cost(h,,1) cost(h,,2) cost(h,, U)
hjg cost(hyy), 1) cost(hy, 2) cost(hy), U)

Average 0(1) 0(1) 0(1) 0(1)

Hash Table

* Worst-case expected query cost: O(1)
* Worst-case query cost: 0(n)

* Question:
e Can we improve the worst-case query cost?

Hash Table: Improving the Worst Cost

O(nlogn) preprocessing cost

Replace linked lists with sorted arrays

10

A 4
(o)}

28

14

29

26

—> NIL

18

—> NIL

24

—> NIL

\ 4

14

26

28

29

18

24

Hash Table: Improving the Worst Cost

* Query: whether 29 exists
* Step 1:

* Access the hash table to obtain the address of
corresponding array

* 0(1) time

H

I—V 2 6 9 110|114 | 26| 28| 29

18

24

Hash Table: Improving the Worst Cost

* Query: whether 29 exists
* Step 2:

e Perform binary search on the array to find the target
* O(logn) time

* Overall worst-case complexity: O(logn)

H

2 6 9 (10|14 | 26 28.

18

24

Hash Table: Improving the Worst Cost

* This method retains the O (1) worst-case expected
guery time.

* Proof:
* Suppose we look up an integer g

* Define random variable X}) to be the length of array that
corresponds to the hash value h(q)

* Expected query time:

n

E[logz Xh(q)] = zl_llng [- PI‘(Xh(q) = l)

< YL Pr(Xpg) = 1)

= E[Xp(q)]
=0(1)

Next, we will discuss two applications of hashing.

The Two-Sum Problem (Revisited)

* Problem Input:
* An array A of n distinct integers (not necessarily sorted).

e Goal:

* Determine whether if there exist two different integers x and y in A
satisfyingx + y=v

* Example: find a pair whose sum is 20

11 3 |17 7 | 2 |13

Solution 1: Binary Search the Answer

* Goal: Find a pair (x,y) suchthatx +y =v
* Observe that given x, y = v — x, is determined

* Solution:
* Sort A
* Foreach x in A:
esetyasv—x
* Use binary search to see if y exists in the sequence

* Time complexity: O(n logn)

Solution 2: Using the Hash Table

e Step 1 and 2:
* Choose a hash function h and create an empty hash table H
* Insert each xin Ainto Ly (4

* Step 3:
*Fori=1ton
* Set yasv — Ali]
* Check if y is in the hash table; if it is, return yes
* Return no

Time Complexity

*Stepland2: 0(n)

* Step 3:
* The step issues n queries (one for each y)
* Let X; be the time of the i-th query
* We know E[X;] = 0(1)
* The worst-case expected cost of step 3 is };; E[X;] = O(n)

* Overall: O(n) in expectation

Sorting by Frequency
(a Regular Exercise)

* Problem input:

* Let S be a multi-set of n integers. The frequency of an integer x as
the number of occurrences of x in §.

* Goal: Produce an array that sorts the distinct integers in S by
frequency.

input: 10| 8 | 8 |12 9 | 9 |12 12 12 : 3 occurrences
8 :2 occurrences

9 :2 occurrences
output: (12 8 [9 [10 10 : 1 occurrence

Using a Hash Table to Obtain Frequencies

10 8 | 8 |12 9 |9 |12)|12

— NIL

— NIL

— > NIL

Using a Hash Table to Obtain Frequencies

10 8 | 8 (12| 9|9 |12|12

(10,1) > NIL

— > NIL

Using a Hash Table to Obtain Frequencies

(8,1) [NIL

(10,1) |~ NIL

— > NIL

Using a Hash Table to Obtain Frequencies

(8,2) — NIL

(10,1) |~ NIL

— > NIL

Using a Hash Table to Obtain Frequencies

121919 |12|12

(8,2) > NiL

(10,1) |~ NIL

A\ 4

(12’1) — NIL

Using a Hash Table to Obtain Frequencies

 The final state:

10 8 | 8 |12 9 | 9 |12 12

\ 4

(8,2) ——— nNIL

A4

(10,1) (9,2) F—> NIL

(12,3) — NL

Counting Sort!

* Now we sort the numbers by frequency.
* Key observation: each frequencyisin [1,n].
* We can carry out the sorting with counting sort in O(n) time.

H

\ 4

(8,2) NIL Counting sort

(9'2)4,,\,“— 121 8 | 9 |10

A4

(10,1)

(12,3) —> NIL

Total time complexity: O (n) expected time.

