
1/11

Further Discussions on Dynamic Arrays

Yufei Tao’s Teaching Team

Further Discussions on Dynamic Arrays



2/11

Recall: Dynamic Arrays

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

Double the array size when it is full.

Why doubling? What if we triple the array size instead?

Further Discussions on Dynamic Arrays



3/11

Another Version — Tripling

Initially, the array has size 3. Define s1 = 3.

At the first expansion, the array size increases from s1 to
s2 = 3s1 = 9.

At the second expansion, the array size increases from s2 to
s3 = 3s2 = 27.

· · ·

At the i-th expansion, the array size increases from si to
si+1 = 3si = 3i+1

The cost of the i-th expansion is O(3i+1).

The array size is at most 3n where n is the number of elements
inserted so far.

Further Discussions on Dynamic Arrays



4/11

Another Version — Tripling

Suppose there are h expansions. Their total cost is bounded by∑i=h
i=1 O(3i+1) = O(3h+1).

Hence, the total insertion cost is O(n + 3h).

After the h-th expansion, the array size is 3h+1. As we never use more
than 3n cells, we know: 3n > 3h+1, meaning 3h < n.

Therefore, O(n + 3h) = O(n).

Further Discussions on Dynamic Arrays



5/11

The Best Expansion Coefficient?

Now, consider the general case where an expansion increases the array
size by α times for some integer α ≥ 2. This ensures that the array size
is at most αn where n is the number of elements inserted so far.

Which α is the best?

Further Discussions on Dynamic Arrays



6/11

The General Algorithm

Initially, the array size is α. Define s1 = α.

At the first expansion, the array size increases from s1 to
s2 = αs1 = α2.

At the second expansion, the array size increases from s2 to
s3 = αs2 = α3.

· · ·

At the i-th expansion, the array size increases from si to
si+1 = αsi = αi+1

The cost of the i-th expansion is O(αi+1).

Further Discussions on Dynamic Arrays



7/11

Analysis

Consider inserting n integers into the array.

Suppose there are h expansions. Their total cost is

O(
∑i=h

i=1 α
h+1) = O(α

h+2

α−1 ).

The total insertion cost is O(n + αh+2

α−1 ).

As we never use more than αn space, we know αn > αh+1, which gives

αh < n. Hence, the total cost is O(n + α2

α−1n), implying that the

amortized cost is O(1 + α2

α−1 ).

The term α2

α−1 achieves its minimum when α = 2.

Further Discussions on Dynamic Arrays


