Further Discussions on Dynamic Arrays

Yufei Tao's Teaching Team

1/11 Further Discussions on Dynamic Arrays

- **A B b A**

< 口 > < 同 >

Why doubling? What if we triple the array size instead?

Further Discussions on Dynamic Arrays

э

2/11

・ロト ・同ト ・ヨト ・ヨト

Another Version — Tripling

- Initially, the array has size 3. Define $s_1 = 3$.
- At the first expansion, the array size increases from s_1 to $s_2 = 3s_1 = 9$.
- At the second expansion, the array size increases from s_2 to $s_3 = 3s_2 = 27$.
- • •
- At the *i*-th expansion, the array size increases from s_i to $s_{i+1} = 3s_i = 3^{i+1}$

The cost of the *i*-th expansion is $O(3^{i+1})$.

The array size is at most 3n where n is the number of elements inserted so far.

3/11

< ロ > < 同 > < 回 > < 回 >

Another Version — Tripling

Suppose there are *h* expansions. Their total cost is bounded by $\sum_{i=1}^{i=h} O(3^{i+1}) = O(3^{h+1}).$

Hence, the total insertion cost is $O(n + 3^h)$.

After the *h*-th expansion, the array size is 3^{h+1} . As we never use more than 3n cells, we know: $3n > 3^{h+1}$, meaning $3^h < n$.

Therefore, $O(n + 3^h) = O(n)$.

Further Discussions on Dynamic Arrays

4/11

イロト イポト イラト イラト

The Best Expansion Coefficient?

Now, consider the general case where an expansion increases the array size by α times for some integer $\alpha \ge 2$. This ensures that the array size is at most αn where n is the number of elements inserted so far.

Which α is the best?

5/11

A (a) < (b) < (b) </p>

The General Algorithm

- Initially, the array size is α . Define $s_1 = \alpha$.
- At the first expansion, the array size increases from s_1 to $s_2 = \alpha s_1 = \alpha^2$.
- At the second expansion, the array size increases from s_2 to $s_3 = \alpha s_2 = \alpha^3$.

• • • •

• At the *i*-th expansion, the array size increases from s_i to $s_{i+1} = \alpha s_i = \alpha^{i+1}$

The cost of the *i*-th expansion is $O(\alpha^{i+1})$.

6/11

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Consider inserting *n* integers into the array.

Suppose there are *h* expansions. Their total cost is $O(\sum_{i=1}^{i=h} \alpha^{h+1}) = O(\frac{\alpha^{h+2}}{\alpha-1}).$

The total insertion cost is $O(n + \frac{\alpha^{h+2}}{\alpha-1})$.

As we never use more than αn space, we know $\alpha n > \alpha^{h+1}$, which gives $\alpha^h < n$. Hence, the total cost is $O(n + \frac{\alpha^2}{\alpha - 1}n)$, implying that the amortized cost is $O(1 + \frac{\alpha^2}{\alpha - 1})$.

The term $\frac{\alpha^2}{\alpha-1}$ achieves its minimum when $\alpha = 2$.

7/11

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト