Sorting Key-Value Pairs

By Yufei Tao’s Teaching Team

* We have learned how to sort a set of n integers in

* O(nlogn) time;
* O(n+ U) time if every integer is from [1, U].

* In practice, sorting is often used to sort a set of “records” by
their “keys” (e.g., sorting student records by student ID). In
this tutorial, we will discuss how the algorithms we have

learned can be adapted for this purpose.

The Problem of Sorting Key-Value Pairs

* Define a record to be a pair (k, v) where k is an integer
referred to as the record’s key, and v is another integer
referred to as the record’s value.

* Input: A set S of n records given in an array A, where Al/]
stores the j-th pair of S.
* Note: Some records may have the same key.

e Output: An array where the n records are arranged in non-
ascending order of their keys.

Example

* Input:
S = {{9' vl}' {7' UZ}' {2' U3}, {6' U4}, {2' US}) {71 v6}r {1' U7}, {2' v8}}

* |nitially we have the following array

Input Array

ki vi ky v, ks v3 kg4 vy ks vs kg ve k; v, kg vg

9 vy | 7 (v | 2 |v3| 6 (Vs | 2 |Us | 7 (V| 1 (V]| 2 |Vg

* Rearrange the records so that their keys are non-descending:

Sorted Array

1 U~y 2 V3 2 14 2 Vg 6 Uy 7 (%) 7 Vg 9 V1

Adapting Comparison-Based Algorithms

We have discussed 3 comparison-based sorting algorithms:
selection sort, merge sort, and quick sort.

Our discussions have assumed that the elements to be sorted are
distinct. This assumption allows that every comparison has a clear
“winner”.

We no longer have this property here as records can have the
same key.

It is possible to look at each individual algorithm and work out the
necessary adaptation tailored for that algorithm.

However, there is a “black-box” adaptation that works on all
comparison-based sorting algorithms. This is the composite-key
approach.

Suppose that we have two records with the same key, e.g., (k, v;) and

(k,v,). The two records’ relative ordering in the output array is
unimportant. We can utilize the property to create a “new key” for each
record, ensuring that all the records’ new keys are distinct.

Specifically, for each record (k, v), we will assign it a distinct ID, after
which the record becomes (k, id, v).
* We will treat (k, id) as the record’s new key.

Whenever an algorithm needs to compare two records (kq, id4, ;) and
(k,,id,,v,), the comparison is resolved as follows:

* If k; < k,, then the first record is “smaller”;

 Ifk; =k, and id; < id,, then the first record is “smaller”;

* Otherwise, the second record is “smaller”.

We can now apply merge sort to perform the sorting in O(nlogn) time.

Adapting Counting Sort

Counting Sort (Linked List Ver.)

AR AR A AR AR AR A

1 2 3 45 6 7 8 9

I I T _L_: Anull pointer

fitii47

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

9 2] 'z U3 Uy Us 43 U~ Vg [N
EERERRRT"
V1
X
1 2 4 5 6 7 8 9
QWi | Ly |23 6Ws|2V5|7 V6|1 vy]|2 Vg AN 1|
y v v v Ej
|] # v, 1 1
X X
1 2 4 5 6 7 8 9
Wi 7w [23| 6Ws[2Vs5|7 |l V7]2 (Vg i i | i |
L L] 1) J_Ea
1 X X

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

QWi 7|2 s Uy | &Vs | / [Ve| L V7 Vg AN o
v v j|_¢ ¢
__173 — J_v4 %) J_vl
[R
Vs
1 2 3 4 56 7 8 9
QWi 7w |2W3[6Ws|2W5[86|l vs|2|vg

| 1 | |
4 A\ 4 # ¢
| 11 A

S

<

N
e

|

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

V7

1

U3
Vs
X

| |
11y

2

(%)

X

|
1

-3l

Counting Sort (Linked List Ver.)

1 2 3 45 6 7 8 9

QWi |7 Wwa[2W3|6V4|2Ws5[7 V6|1 7|2 Vg iR
A 111

|
L]
v4v2J_1

V7 |[V3
1 1 1
[e
1w, |2w3|2Wws|[2g|6vs|7 Vo] 7 V6|9 Ve _f_ i
A, Vg
1

How do we produce the sorted array A’?

Scan array B. For each cell referencing a non-empty linked
list, enumerate all the pairs therein.

Overall time complexity: O(n + U)

Next, we will give another version of
counting sort that does not use linked lists.

Counting Sort (2nd Ver.)

9 v, 7|vz 2 W3|6Ws|2Ws|7e|llvs]|2 (Vg
A

We first compute an array B to store the number of
occurrences of each key.

1 23 456 7 89
113/0]/0({0f1|2]|0]|1

The next slide will explain how to do so.

Counting Sort (2nd Ver.)

1 2 3 4 5 6 8

QW | 7w 2W3|6W4[2Ws5[7 V6|1 w,]|2[Ug 0(0|{0(0(0]|O 0
1 2 3 4 5 6 8

QW LW |2W3|6W4(2W5([7 V6|1 w,]|2[vg 0(0({0[|0(0]|O 0
1 2 4 5 6 8

QW |7 w2136 Ws|2W5|7 6|1 W,|2 g Of2(0|0(0]|0 0
1 2 3 4 5 6 8

QW |7Wwy|2W3|6W4f2Ws5(7 V6|1 ,]|2[vg 0f2(0({0(0|1 0
1 2 3 4 5 6 8

QWi |7Wy|2W3|6V4|2Ws[lVe|lw,]|2vg 0(2{0(0(0]|1 0
2 3 4 5 6 8

QWi |7 Wwy|2W3|6W4(2Ws5(7 V6|1 w,[20g 113|10({0|0]|1 0

Counting Sort (2nd Ver.)

9 v, 7|vz 2 W3|6Ws|2Ws|7e|llvs]|2 (Vg
A

Then we will change B from
1 2 3 4 5 6 7 8 9
1{3]ofo]o]1]2]0]1

To array C
1 2 3 4 5 6 7 8 9
1|4|4|4]4|5|7|7]|8

where C[k] = XX, B[i] for every k € [1,n].
The next slide will explain how to do so in O(U) time.

Counting Sort (2nd Ver.)

For each i € [2,U], set C[i] « B[i] + C[i — 1].

2 3 456 7 89 1 2 3

[=2 1{310/0(0(1|2]|0]|1 1{4/0|0
2 3 456 7 89 1 2 3
i =3 1{4]0 0/1{2]0 1414
1 23 456 7 8 1 2 3
i =4 1414 0/1{2]|0]|1 1(4]4

Counting Sort (2nd Ver.)

1 2 3 4 5 6 7 8 9

9171 v22v3 6v42v57v61v7 2178 114(4|14|14|5|7|7|8
A C

Our goalis to produce [1v;[2w3|2vs|2vg|[6Ws|7v,|7 V6|9 vy

We will scan A backward and keep an invariant:

If (k,v) is the rightmost pair among all the
pairs with key k in the non-scanned part of
A, the position of (k,v) in A" is C[k].

Counting Sort (2nd Ver.)

Scan array A from right to left.

If (k,v) is the rightmost pair among all the
pairs with key k in the non-scanned part of
A, the position of (k,v) in A" is C[k].

1 2 3 4 56 7 8 9

Qw7 |23 6v42v57v61v7- 1.4445778

Insert the pair to A’ and update B.

1 2 3 4 5 6 7 8 1 2 3 456 7 89
[2] 1B 4]4]4]5]7]7]8

« A’ — «~— ——™

Counting Sort (2nd Ver.)

1 2 3 45 6 7 8 9

[a]3[4]4]4]5]7]7]8

9, [7lv,[2vs[6va]2lvs [7 vs [T ln] 2 g

1 2 3 4 5 6 7 8 9

WO 3[4]4]4]5]7]7]8

2 Vg

AI

1 2 3 45 6 7 8 9

0[3]4]4]4]5]7]7]8

OWw|7 w2 3|6 [V, 2v5-1v7 2 Vg

1 2 3 4 5 6 7 8 9

JBEAAEH EE

e

2 Vg
AI

1w,
47

Counting Sort (2nd Ver.)

o
I

SUEI
ul
o))
~
00

9w, [7]2 ;[6v, [2W0s] 7 v [1 v, [2]vg
«— A —_—
1 3 4 5 6

1y R 2 v Ve
— A’ _
Qw7 v, 2v3-2v5 1 Wel 1,12 vg
«— A —_—
1 3 4 5 6

1w, Vs 2v8- Ve
— A’ _—

Counting Sort (2nd Ver.)

1 2 3 45 6 7 8 9

o[2]4]4]4]4]6]7]8

9 v, 7v2-6v4 2Ws|7wellv,|2vg

1 2 3 4 5 6 7 8 9

o 4]4]4]4]6]7]8

7176

1v7-2v5 2vg| 6y,

AI

1 2 3 45 6 7 8 9

o]1]4]4]4]4]6]7]8

9v1-2v3 Bs[2Wws|7gldpw,|2 g

1 2 3 4 5 6 7 8 9

ol1]4]a]4[4 B 7]8

1U7 2173 2175 2178 6174_7176

AI

Counting Sort (2nd Ver.)

1 2 3 4 5 6 7 8 9
Bl 7 v, [2v;[6 .27 ve[2 v, [21vs o[1]4]4]4]4]5]7]8]
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
1, [2[vs]2[vs[2]vg[6 v [71v, [71v, IONE [0]1[4[a[4]4[s5]7]
« A’ R — cC ——F——

Overall time complexity: O(n + U)

