
Sorting Key-Value Pairs

By Yufei Tao’s Teaching Team

• We have learned how to sort a set of n integers in
• time;
• time if every integer is from [1, U].

• In practice, sorting is often used to sort a set of “records” by
their “keys” (e.g., sorting student records by student ID). In
this tutorial, we will discuss how the algorithms we have
learned can be adapted for this purpose.

The Problem of Sorting Key-Value Pairs

• Define a record to be a pair where k is an integer
referred to as the record’s key, and v is another integer
referred to as the record’s value.

• Input: A set S of n records given in an array A, where A[i]
stores the i-th pair of S.

• Note: Some records may have the same key.

• Output: An array where the n records are arranged in non-
ascending order of their keys.

Example

• Input:
ଵ ଶ ଷ ସ ହ ଺ ଻ ଼

• Initially we have the following array

7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

ଵ ଵ ଶ ଶ ଷ ଷ ସ ସ ହ ହ ଺ ଺ ଻ ଻

9 ଵ

଼ ଼

2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺ 9 ଵ1 ଻

Sorted Array

Input Array

• Rearrange the records so that their keys are non-descending:

Adapting Comparison-Based Algorithms

• We have discussed 3 comparison-based sorting algorithms:
selection sort, merge sort, and quick sort.

• Our discussions have assumed that the elements to be sorted are
distinct. This assumption allows that every comparison has a clear
“winner”.

• We no longer have this property here as records can have the
same key.

• It is possible to look at each individual algorithm and work out the
necessary adaptation tailored for that algorithm.

• However, there is a “black-box” adaptation that works on all
comparison-based sorting algorithms. This is the composite-key
approach.

• Suppose that we have two records with the same key, e.g., ଵ and
ଶ . The two records’ relative ordering in the output array is

unimportant. We can utilize the property to create a “new key” for each
record, ensuring that all the records’ new keys are distinct.

• Specifically, for each record , we will assign it a distinct ID, after
which the record becomes .

• We will treat (𝑘, 𝑖𝑑) as the record’s new key.

• Whenever an algorithm needs to compare two records ଵ ଵ ଵ and
ଶ ଶ ଶ , the comparison is resolved as follows:
• If 𝑘ଵ < 𝑘ଶ, then the first record is “smaller”;
• If 𝑘ଵ = 𝑘ଶ and 𝑖𝑑ଵ < 𝑖𝑑ଶ, then the first record is “smaller”;
• Otherwise, the second record is “smaller”.

• We can now apply merge sort to perform the sorting in time.

Adapting Counting Sort

Counting Sort (Linked List Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

：A null pointer

Counting Sort (Linked List Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

9 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵ

1 2 3 4 5 6 7 8 9

ଵଶ

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ

ଵ

Counting Sort (Linked List Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

Counting Sort (Linked List Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

଻

଼

Counting Sort (Linked List Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺ 9 ଵ

How do we produce the sorted array A’?

Scan array B. For each cell referencing a non-empty linked
list, enumerate all the pairs therein.

Overall time complexity:

1 2 3 4 5 6 7 8 9

ଵଶଷ ସ

ହ ଺

଻

଼

Next, we will give another version of
counting sort that does not use linked lists.

Counting Sort (2nd Ver.)

We first compute an array to store the number of
occurrences of each key.

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

The next slide will explain how to do so.

1 2 3 4 5 6 7 8 9

1 3 0 0 0 1 2 0 1

Counting Sort (2nd Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

9 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

ଵ

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 1 0 1

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

0 2 0 0 0 1 1 0 1

0 2 0 0 0 1 2 0 1

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

1 3 0 0 0 1 2 0 1

…

…

Counting Sort (2nd Ver.)

Then we will change B from

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

where = for every .
The next slide will explain how to do so in O(U) time.

1 2 3 4 5 6 7 8 9

1 3 0 0 0 1 2 0 1

To array C
1 2 3 4 5 6 7 8 9

1 4 4 4 4 5 7 7 8

Counting Sort (2nd Ver.)
For each , set .

1 2 3 4 5 6 7 8 9

1 3 0 0 0 1 2 0 1
1 2 3 4 5 6 7 8 9

1 4 0 0 0 1 2 0 1

1 2 3 4 5 6 7 8 9

1 4 0 0 0 1 2 0 1
1 2 3 4 5 6 7 8 9

1 4 4 0 0 1 2 0 1

1 2 3 4 5 6 7 8 9

1 4 4 0 0 1 2 0 1
1 2 3 4 5 6 7 8 9

1 4 4 4 0 1 2 0 1

……

1 2 3 4 5 6 7 8 9

1 4 4 4 4 5 7 7 8

Counting Sort (2nd Ver.)
9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺ 9 ଵ

We will scan A backward and keep an invariant:

1 2 3 4 5 6 7 8 9

1 4 4 4 4 5 7 7 8

If is the rightmost pair among all the
pairs with key k in the non-scanned part of
A, the position of in is .

Our goal is to produce

Counting Sort (2nd Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

2 ଼

1 2 3 4 5 6 7 8 9

1 4 4 4 4 5 7 7 8

Scan array from right to left.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

1 3 4 4 4 5 7 7 8

Insert the pair to ᇱ and update .

If is the rightmost pair among all the
pairs with key k in the non-scanned part of
A, the position of in is .

Counting Sort (2nd Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

1 3 4 4 4 5 7 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

0 3 4 4 4 5 7 7 8

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଼ 7 ଺

1 2 3 4 5 6 7 8 9

0 3 4 4 4 5 7 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

0 3 4 4 4 5 6 7 8

Counting Sort (2nd Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ହ 2 ଼ 7 ଺

1 2 3 4 5 6 7 8 9

0 3 4 4 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

0 2 4 4 4 5 6 7 8

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

0 2 4 4 4 5 6 7 8

1 2 3 4 5 6 7 8 9

0 2 4 4 4 4 6 7 81 ଻ 2 ହ 2 ଼ 6 ସ 7 ଺

1 2 3 4 5 6 7 8

Counting Sort (2nd Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 ଻ 2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଺

1 2 3 4 5 6 7 8 9

0 2 4 4 4 4 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

0 1 4 4 4 4 6 7 8

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

0 1 4 4 4 4 6 7 8

1 2 3 4 5 6 7 8 9

0 1 4 4 4 4 5 7 81 ଻ 2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺

1 2 3 4 5 6 7 8

Counting Sort (2nd Ver.)

9 ଵ 7 ଶ 2 ଷ 6 ସ 2 ହ 7 ଺ 1 ଻ 2 ଼

1 2 3 4 5 6 7 8 9

0 1 4 4 4 4 5 7 8

1 2 3 4 5 6 7 8 9

0 1 4 4 4 4 5 7 71 ଻ 2 ଷ 2 ହ 2 ଼ 6 ସ 7 ଶ 7 ଺ 9 ଵ

1 2 3 4 5 6 7 8

Overall time complexity:

