
1/12

An In-Place Implementation of Quick Sort

By Yufei Tao’s Teaching Team

An In-Place Implementation of Quick Sort



2/12

We have learned that quick sort guarantees running time O(n log n) in
expectation. Today, we will discuss how to implement it in an “in-place”
manner.

In general, an implementation is said to be in-place if it uses ex-
actly n memory cells, namely, just enough to store the input array.

An In-Place Implementation of Quick Sort



3/12

Recall:

The Sorting Problem. The input is an array A of n distinct
integers. The goal is to output an array where the n integers are
stored in ascending order.

An In-Place Implementation of Quick Sort



4/12

Recall: The Quick Sort Algorithm

1 Pick an integer p from A uniformly at random, which is called the
pivot.

2 Store the integers in another array A′ such that

all the integers smaller than p are before p in A′;
all the integers larger than p are after p in A′.

3 Sort the part of A′ before p recursively (a subproblem).

4 Sort the part of A′ after p recursively (a subproblem).

An In-Place Implementation of Quick Sort



5/12

Example

Original array A (suppose that 26 was randomly picked as the pivot):

5 91217 2628 3538 41 47 52682072 8388

p

Step 2 creates another array A′:

5 91217 26 28 3538 41 47 526820 72 8388

p

Creation of A′ requires reading and writing n integers.

An In-Place Implementation of Quick Sort



6/12

An In-Place Version of Quick Sort

1 Pick a pivot p from A uniformly at random.

2 Re-arrange the integers in A such that

all the integers smaller than p are before p in A;
all the integers larger than p are after p in A.

3 Sort the part of A before p recursively (a subproblem).

4 Sort the part of A after p recursively (a subproblem).

Next, we will explain how to implement Step 2 in O(n) time without
using any extra memory cells (other than those in A). The
implementation uses only O(1) CPU registers.

An In-Place Implementation of Quick Sort



7/12

First, store the pivot p = 26 in a CPU register. This creates an empty
slot, which we refer to as the gap.

5 9121728 3538 41 47 52682072 8388

gap

Set pointers i = 1 and j = n = 16. The values of i and j are in CPU
registers.

5 9121728 3538 41 47 52682072 8388

i j

Here, A[i ] > p = 26 and A[j ] < p. We swap A[i ] with A[j ], which gives:

59 121728 35 3841 47 52682072 8388

i j

An In-Place Implementation of Quick Sort



8/12

Increase i until A[i ] > p = 26 and decrease j until A[j ] < p:

59 121728 35 3841 47 52682072 8388

i j

Swapping A[i ] with A[j ] gives:

59 1217 28 35 3841 47 52682072 8388

i j

Again, increase i until A[i ] > p and decrease j until A[j ] < p:

59 1217 28 35 3841 47 52682072 8388

i j

Swapping A[i ] with A[j ] gives:

59 12 17 28 35 3841 47 52682072 83 88

i j

An In-Place Implementation of Quick Sort



9/12

Again, we try to increase i to find the next A[i ] > p = 26. However, this
time i hits the gap before such an A[i ] is found:

59 12 17 28 35 3841 47 52682072 83 88

i j

Keeping i at the gap, we now decrease j to find the next A[j ] < p:

59 12 17 28 35 3841 47 52682072 83 88

i j

Swapping A[i ] with A[j ] gives:

59 12 17 28 35 3841 47 526820 72 83 88

i j

Note: j points to the gap now.

An In-Place Implementation of Quick Sort



10/12

Keeping j at the gap, we now increase i to find the next A[i ] > p = 26:

59 12 17 28 35 3841 47 526820 72 83 88

i j

Swapping A[i ] with A[j ] gives:

59 12 17 28 35 3841 47 526820 72 83 88

i j

Note: i points to the gap now.

An In-Place Implementation of Quick Sort



11/12

Keeping i at the gap, we try to decrease j to find the next A[j ] < p = 26.
However, this time j hits the gap before such an A[j ] is found:

59 12 17 28 35 3841 47 526820 72 83 88

ij

As both i and j point to the gap, we now finish by entering p into the
gap:

59 12 17 28 35 3841 47 526820 72 83 88

ij

26

An In-Place Implementation of Quick Sort



12/12

The in-place implementation has at least two advantages over our
old implementation:

It uses less memory.

It may perform less memory writes (think: why?).

Owing to these advantages, quick sort usually outperforms merge sort in

practice, even though their time complexities are both O(n log n).

An In-Place Implementation of Quick Sort


