Week 4 Tutorial

By Yufei Tao's Teaching Team

Outline

- Review recursion principle
- Review merge sort
- A variant of binary search
- A variant of merge sort
- Closest pair problem

Review – Recursion Principle

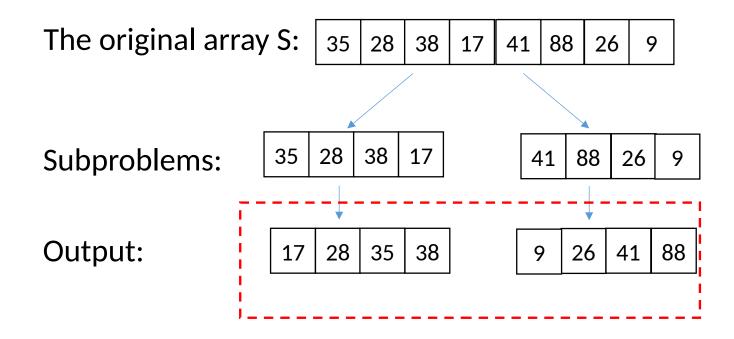
 When dealing with a subproblem (same problem but with a smaller input)

1. Consider it solved;

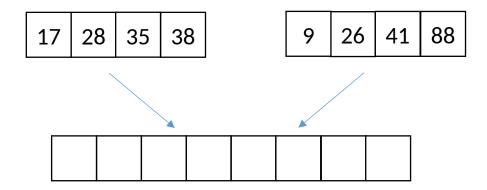
2. Use its output to design the rest of the algorithm.

Review – Merge Sort

- Identify the subproblems:
 - Sort the first half of the array S.
 - Sort the second half of S.

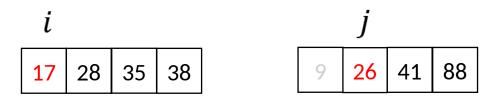


Merge 2 sorted arrays into a single sorted array

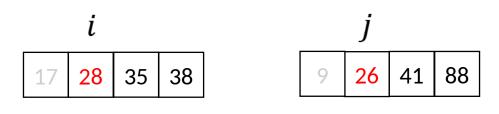


- Set *i*, *j* to 1
- Compare 17 and 9
- 9 is smaller
- Place 9 into the new array and increase j by 1

- Compare 17 and 26
- 17 is smaller
- Place 17 into the new array and increase i by 1

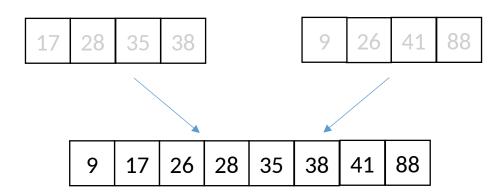


- Compare 28 and 26
- 26 is smaller
- Place 26 into the new array and increase j by 1

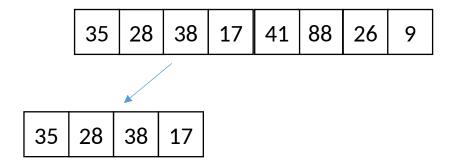


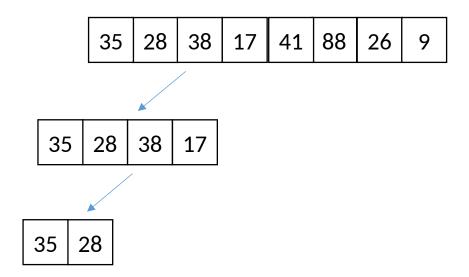
9 17	26					
------	----	--	--	--	--	--

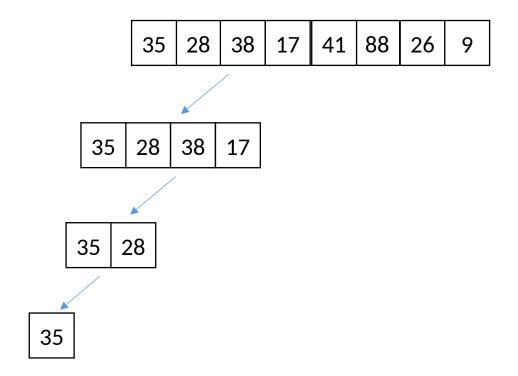
- Continue the above process until we have placed all elements into the new array
- Single pass over all the input elements
- Time complexity: O(n)

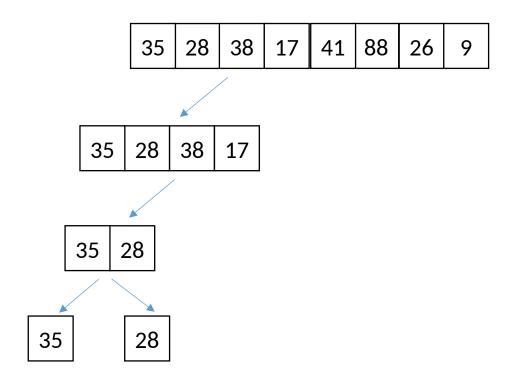


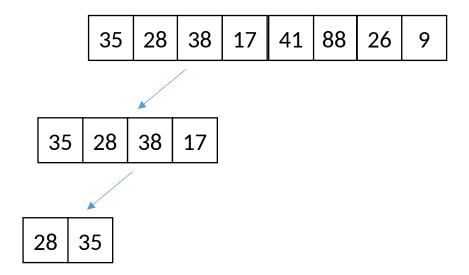
35 28 38 17 41 88 26 9

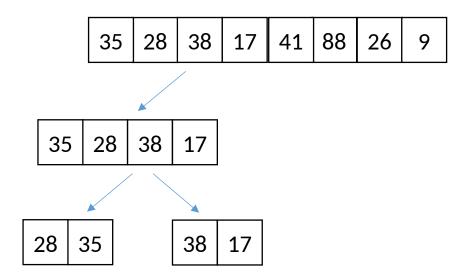


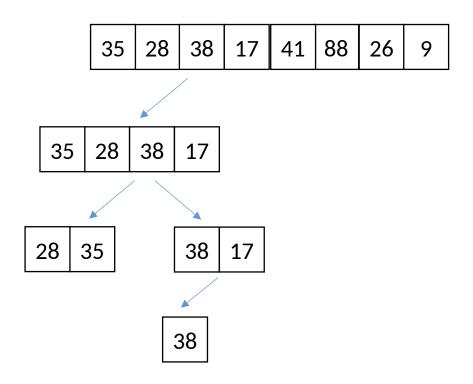


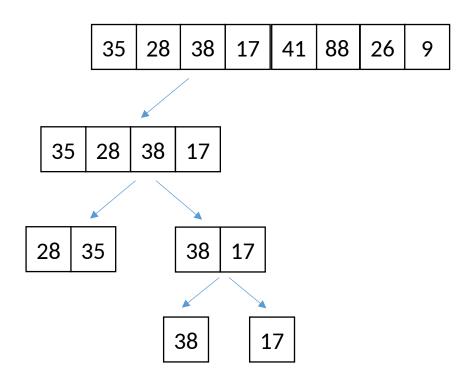


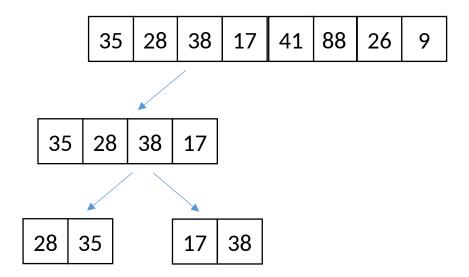


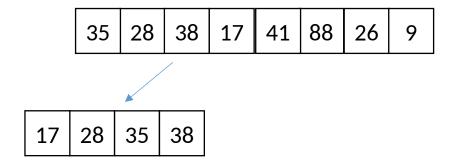


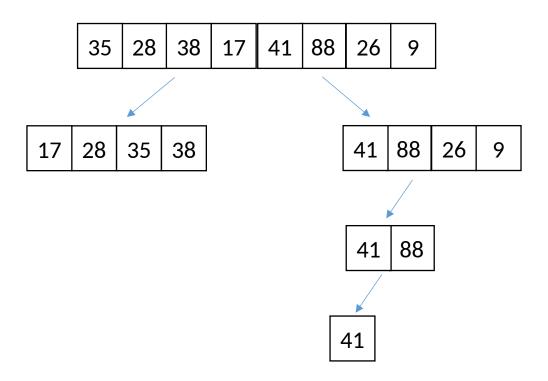


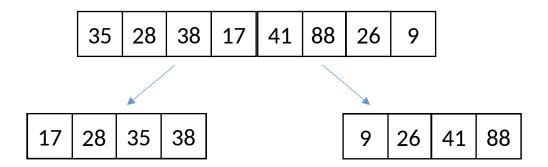








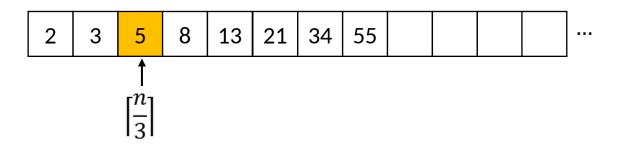




9 17 26 28 35 38 41 88

A Variant of Binary Search

Instead of comparing the target value with the middle element, we compare the target with the $\lceil n/3 \rceil$ -th element each time.



Time Complexity

- In the worst case, after each comparison, twothirds of the active elements are left.
- Solution
 - T(1) = O(1)
 - $T(n) \le T\left(\left\lceil\frac{2n}{3}\right\rceil\right) + O(1)$
 - Solving the recurrence gives $T(n) = O(\log n)$.

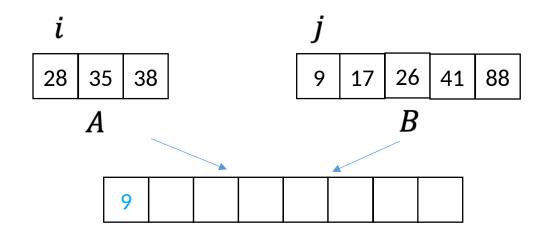
Time Complexity

- What if we compare the target with the $\left|\frac{n}{300}\right|$ -th element?
- The time complexity is still $O(\log n)$!
 - Try verifying this by yourself.
- In general, if the comparison is made to the $\left|\frac{n}{k}\right|$ -th element for some constant k > 1, the time complexity is still $O(\log n)$.

Generalized Merge Operation

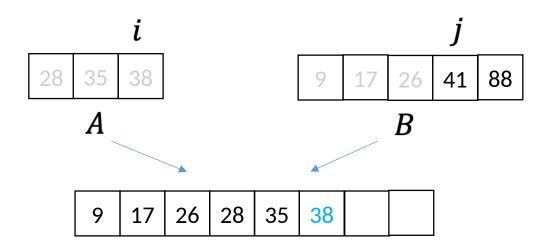
Merge 2 sorted arrays A and B, of lengths m and n.

- Set *i*, *j* to 1.
- Compare 9 with 25.
- Place 9 into the new array and increase i by 1.



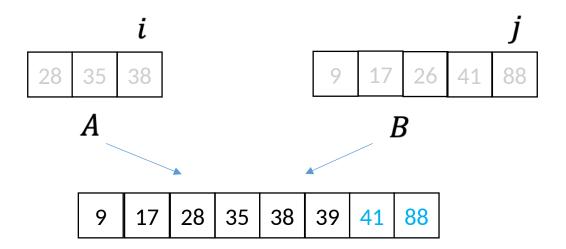
Generalized Merge Operation

 Repeat the process until we have put all the elements of one input array into the new array.



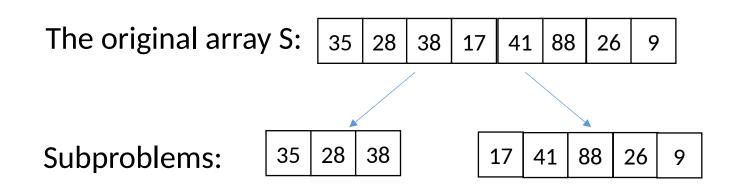
Generalized Merge Operation

- Append the remaining elements to the new array.
- Time complexity: O(m + n).



A Variant of Merge Sort

- Solve the subproblems:
 - Sort the first $\left[\frac{n}{3}\right]$ elements of the array S.
 - Sort the rest of S.
- Merge the 2 sorted arrays of different lengths.

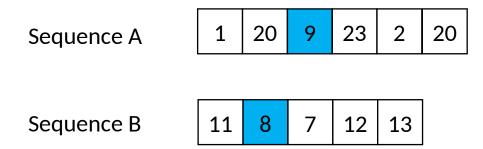


Time Complexity

- The merging takes $O\left(\left[\frac{2n}{3}\right] + \left[\frac{n}{3}\right]\right) = O(n)$ time.
- Recurrence
 - T(1) = O(1)
 - $T(n) \le T\left(\left\lceil\frac{2n}{3}\right\rceil\right) + T\left(\left\lceil\frac{n}{3}\right\rceil\right) + O(n)$
 - Solving the recurrence gives $T(n) = O(n \log n)$.
 - The recurrence can be solved with the substitution method (a regular exercise).

A Bonus Problem: Closest Pair

- Problem input:
 - Two unsorted sequences A and B with m and n integers
 - n < m
- Goal: Find a pair (x, y), x from A and y from B, with the minimum |x y|.



A Bonus Problem: Closest Pair

- This problem can be solved in $O(m \log n)$ time.
 - Sort the **shorter** sequence.
 - Then, use elements of the longer sequence to perform binary searches.
- Note: $O(m \log n)$ is better than $O(m \log m)$ when n << m.

