Week 3 Tutorial

By Yufei Tao's Teaching Team ${\sf CSE\ Dept},\ {\sf CUHK}$

The Predecessor Search Problem

Problem Input

- An array A of n integers in ascending order
- A search value q

Goal:

Find the predecessor of q in A.

Remark: the predecessor of q is the largest element in A that is smaller than or equal to q.

Example

- 1. If q = 23, the predecessor is 21.
- 2. If q = 21, the predecessor is also 21.
- 3. If q = 1, no predecessor.

	2	3	5	8	13	21	34	55
--	---	---	---	---	----	----	----	----

Α

Binary Search

- If A contains q, binary search will find q directly.
- If A does not contain q, the predecessor of q can be easily inferred from where the algorithm terminates.

2 3 5 8 13 21 34 55										
A										

The Two-Sum Problem

Input

- An array of *n* integers in ascending order.
- An integer v.

Goal:

Determine whether A contains two different integers x and y such that x + y = v.

Example

- If v = 30, answer "yes".
- If v = 29, answer "no".

2	1 2	l –	1 7	111	1 1 2	17	110	ไวว	20	21	27
	1 3	וסו	I /	1 1 1	I 13	l 1/	1 19	I 23	29	1 3 L	13/
					1						

Solution

Use binary search as a building brick.

Key idea: For each x in the array, look for v - x with binary search.

Analysis

This algorithm performs at most n binary searches.

Cost of the algorithm: $O(n \log n)$

Can you do even better?

Try to solve this problem in O(n) time (not covered in this tutorial).

More on big-O

Recall the definition of f(n) = O(g(n)):

f(n) = O(g(n)), if there exist two positive constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ holds for all $n \ge c_2$.

Another approach is to compute $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ and decide as follows:

- f(n) = O(g(n)), if the limit is bounded by an constant;
- $f(n) \neq O(g(n))$, if the limit is ∞ .

Note: there is a third possibility for the limit, where the approach will fail.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Method 1: Constant finding

- \bigcirc Fix c_1
- ② Solve for c_2
- \bullet If a c_2 cannot be found, go back to Step 1 and try a different c_1 .

Let
$$f(n) = 10n + 5$$
 and $g(n) = n^2$. Prove $f(n) = O(g(n))$

$$(\text{try } c_1 = 5)$$

$$f(n) \le c_1 \cdot g(n)$$

$$\Leftrightarrow 10n + 5 \le c_1 \cdot n^2$$

$$\Leftrightarrow 5(2n+1) \le 5 \cdot n^2$$

$$\Leftrightarrow 2n+1 \le n^2$$

$$\Leftrightarrow 2 \le (n-1)^2$$

$$\Leftrightarrow 3 < n$$

Hence, it suffices to set $c_2 = 3$.

Exercise 1)

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Method 2: Limit

$$\lim_{n\to\infty}\frac{10n+5}{n^2}=\lim_{n\to\infty}\frac{10+5/n}{n}=0.$$

Hence, f(n) = O(g(n)).

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 1: Constant finding (prove by contradiction)

Suppose that g(n) = O(f(n)), i.e., there are constants c_1, c_2 such that, for all $n \ge c_2$, we have

$$n^{2} \leq c_{1} \cdot (10n + 5)$$

$$\Rightarrow \qquad n^{2} \leq c_{1} \cdot 20n$$

$$\Leftrightarrow \qquad n \leq 20c_{1}$$

which cannot hold for all $n \ge c_2$, regardless of c_2 . This gives a contradiction.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 2: Limit

$$\lim_{n\to\infty}\frac{n^2}{10n+5}=\infty.$$

Hence, $g(n) \neq O(f(n))$.

In some rare scenarios, the limit approach may fail. We will see an example next.

Consider $f(n) = 2^n$. Define g(n) as:

- $g(n) = 2^n$ if n is even;
- $g(n) = 2^{n-1}$ otherwise.

Since $f(n) \le 2g(n)$ holds for all $n \ge 1$, it holds that f(n) = O(g(n)).

However, $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ does not exist, because it keeps jumping between 1 and 2 as n increases!

Next, we discuss how to extend the big- ${\cal O}$ definition to two variables. The definition can be extended to more variables following the same idea.

Big-O with Two Variables

Let f(n, m) and g(n, m) be functions of variables n and m satisfying $f(n, m) \ge 0$ and $g(n, m) \ge 0$. We say f(n, m) = O(g(n, m)) if there exist constants c_1 and c_2 such that $f(n, m) \le c_1 \cdot g(n, m)$ holds for all $n > c_2$ and $m > c_2$.

Regular Excercise 2 Problem 8

Let
$$f(n, m) = n^2 m + 100 nm$$
 and $g(n, m) = n^2 m$.
Prove $f(n, m) = O(g(n, m))$.

Obviously:

$$n^2m + 100nm \leq 101n^2m$$

for any $n \ge 1$ and $m \ge 1$.

Hence, it suffices to set $c_1 = 101$ and $c_2 = 1$.

Let
$$f(n, m) = n^2 m + 100 nm^2$$
 and $g(n, m) = n^2 m + nm^2$.
Prove $f(n, m) = O(g(n, m))$.

Obviously:

$$n^2m + 100nm^2 \le 100(n^2m + nm^2)$$

for any $n \ge 1$ and $m \ge 1$.

Hence, it suffices to set $c_1 = 100$ and $c_2 = 1$.