
1/18

Connected Components and
Correctness of BFS in SSSP

Yufei Tao’s Teaching Team

Connected Components and Correctness of BFS in SSSP



2/18

In the lecture, we have discussed the steps of BFS for solving a
special version of the SSSP problem. However, we have not proved
the algorithm’s correctness yet. This will be done today.
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Single Source Shortest Path (SSSP) with Unit Weights

Let G = (V ,E ) be a directed graph and s be a vertex in V . The goal of
the SSSP problem is to find, for every other vertex t ∈ V \ {s}, a
shortest path from s to t, unless t is unreachable from s.
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Using BFS to Solve SSSP Problem

Run BFS algorithm starting from s on G , which returns a BFS-tree T .

For any v ∈ V \ {s}, the path from s to v in T as the shortest path from
s to v in G . If the path does not exist, it means that s cannot reach v .
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Using BFS to Solve SSSP Problem
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For each vertex v ∈ V , let ℓ(v) denote the level of v in T , namely, the
length of the path from s to v in T .
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Proof of Correctness

We now prove the correctness of BFS, starting with a useful
lemma.

Lemma 1: For any two vertices u, v ∈ V such that u ̸= v , if
ℓ(u) < ℓ(v), then u must be enqueued before v during the BFS.

Proof: We will prove this by induction.

Base Case. ℓ(v) = 1. Hence, ℓ(u) = 0, meaning that u is the source s.

As s is enqueued at the very beginning of BFS, the base case holds.
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Inductive Case.
Inductive assumption: For any two vertices u, v with
ℓ(u) < ℓ(v) ≤ L− 1 where L ≥ 2, it always holds that u is enqueued
before v .

Consider any vertices u and v satisfying ℓ(u) < ℓ(v) = L. If u is the root
of T , then u = s and is obviously enqueued before v . Next, we consider
that u is not the root.

Let pu and pv be their parents in the BFS-tree T , respectively. We have
ℓ(pu) = ℓ(u)− 1 and ℓ(pv ) = ℓ(v)− 1. It follows that
ℓ(pu) < ℓ(pv ) ≤ L− 1.

By the inductive assumption, pu is enqueued before pv . From the FIFO
property of queue, pu is dequeued before pv . As u (resp., v) is enqueued
right after pu (resp., pv ) is dequeued, u is enqueued before v .
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We now prove the correctness of BBS.

Theorem: For any vertex v ∈ V , the path from s to v in T is a
shortest path from s to v in G .

We will prove a stronger claim by induction:

Claim: If a vertex v ∈ V has shortest path distance L from
s, then ℓ(v) = L.

Base Case. L = 0 or 1.

s is the only vertex with shortest path distance 0 from s. It is
obvious that ℓ(s) = 0.

Every vertex v with shortest path distance 1 from s is an
out-neighbor of s. Thus, v is enqueued when s is dequeued
and must have ℓ(v) = 1.
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Inductive Case.
Inductive assumption: If a vertex v has shortest
path distance L ≤ k − 1 from s where k ≥ 2, then
ℓ(v) = L.

Let v be a vertex with shortest path distance k
from s. Consider all the shortest paths from s to v
and let U denote the set of predecessors of v on
those paths. Furthermore, let u1 denote the vertex
in U that was enqueued the earliest during BFS.
The shortest path distance from s to u1 is k − 1.

By the inductive assumption, ℓ(u1) = k − 1. To prove ℓ(v) = k, it
suffices to prove that v is enqueued at the moment u1 is dequeued, or
equivalently:

Claim: v is white when u1 is dequeued.

We will prove this by contradiction.
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Suppose that when u1 is dequeued, v is not
white. This means that v has already been
added to the BFS-tree T when u1 is dequeued.
Define w as the parent of v in T (i.e., v is
enqueued after w is dequeued).

By Lemma 1, We have ℓ(w) ≤ ℓ(u1) as w is
dequeued before u1. We further have
ℓ(w) ̸= ℓ(u1); otherwise, w must belong to U,
which contradicts the definition of u1.

It follows that ℓ(w) < ℓ(u1). However, this means that the shortest path
distance from s to w is less than k − 1. Thus, the shortest path distance
from s to v is less than k , giving a contradiction.
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We have proved the correctness of BFS in solving the SSSP prob-
lem with unit weights on directed graphs. The algorithm is also
correct when it runs on undirected graphs. The proof is similar
and omitted.
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Next, we will discuss connected components, an important con-
cept in graph theory.
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Let G = (V ,E ) be an undirected graph.

A connected component of G is a set S ⊆ V of vertices s.t.

(connectivity) any two vertices in S are reachable from each
other;

(maximality) it is not possible to add another vertex to S
while still satisfying the above requirement.
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There are 3 CCs:
{a, b, c , d , f }, {g , e}, {h, i , j , k}
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Lemma 2: Take an arbitrary vertex s. The CC covering s is
the set R of vertices in G reachable from s.

Proof: Let C be the CC covering s. By the connectivity property,
we know that every vertex in CC is reachable from s. Hence,
C ⊆ R.

If C ⊂ R, then R has at least one vertex u that does not appear in
C . However, the existence of u violates the maximality property of
C .
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Next, we discuss how to find all the CCs of the input (undirected)
graph G = (V ,E ). As shown next, both BFS and DFS can be
deployed for the purpose.
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A BFS Solution

1. Run BFS on G starting from a white source vertex

2. Output the vertex set of the BFS-tree

3. If there is still a white vertex in G , repeat from 1
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Discuss: Why is the algorithm correct?
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A DFS Solution

1. Run DFS on G starting from a white source vertex

2. Output the vertex set of the DFS-tree

3. If there is still a white vertex in G, repeat from 1
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Proof of correctness

Claim: The vertex set S of each DFS-tree is a CC of G .

Proof: We will prove the claim for the first DFS-tree produced.
You can then think about how to prove the claim for the other
DFS-trees.

Let s be the source vertex of DFS. We will show that the DFS-tree
contains all and only the vertices reachable from s.

“All”: Let v be a vertex reachable from s. At the beginning of
DFS, there is a white path from s to v . By the white path
theorem, v must be in the subtree of s, namely, in the DFS-tree.

“Only”: Every vertex in the DFS-tree is clearly reachable from s
(the tree itself gives a path).
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