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Additional Discussions on DFS

Yufei Tao’s Teaching Team
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This tutorial will provide extra examples to enhance your understanding

of several crucial properties of the DFS algorithm.
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Input

a

c f b

d
e

g

Suppose we start from the vertex a, namely a is the root of DFS tree.
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DFS

First, color all the vertices white. Then, create a stack S , push the
starting vertex a into S and color it gray. Create a DFS tree with a as
the root and set its time interval to I (a) = [1,−].

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]

S = (a).
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DFS

Top of stack: a, which has white out-neighbors b, c , f . Suppose we
access c first. Push c into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]

S = (a, c).
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DFS

After pushing d into S :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

S = (a, c , d).
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DFS

Now d tops the stack. It has white out-neighbors e, f and g . Suppose
we visit g first. Push g into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4,  ]

S = (a, c , d , g).
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DFS

After pushing e into S :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4,  ]

e I(e) = [5,  ]

S = (a, c , d , g , e).
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DFS

e has no white out-neighbors. So pop it from S and color it black.
Similarly, g has no white out-neighbors. Pop it from S and color it black.

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4, 7]

e I(e) = [5, 6]

S = (a, c , d).
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DFS

Now d tops the stack again. It still has a white out-neighbor f . So, push
f into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8,  ]

f

S = (a, c , d , f ).
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DFS

After popping f , d , c :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

S = (a).
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DFS

Now a tops the stack again. It still has a white out-neighbor b. So, push
b into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12,  ]

S = (a, b).
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DFS

After popping b and a:

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]

S = ().

There are no more white vertices. The algorithm terminates.
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Lemma (the Ancestor-Descendent Lemma): Let u and v be
two distinct vertices in G . Then, u is an ancestor of v in the DFS-
forest if and only if the following holds: u is already in the stack
when v enters the stack.

Example: When d enters the stack, a and c are in the stack. d is
a descendant of a and c in the DFS-tree.

a

b

c

d
e

f

g

S = a

DFS Tree

c d

a

d

c

Time Interval
I(a) = [1, ]

I(c) = [2, ]

I(d) = [3, ]

Additional Discussions on DFS



15/27

Theorem (the Parenthesis Theorem): Let u and v be two dis-
tinct vertices in G . Then:

I (u) contains I (v) if and only if u is an ancestor of v in the
DFS-forest.

I (u) and I (v) are disjoint if and only if neither u nor v is
an ancestor of the other.

Example: When d enters the stack, a and c are in the stack. d is
a descendant of a and c in the DFS-tree.

a

b

c

d
e

f

g

S = a

DFS Tree

c d

a

d

c

Time Interval
I(a) = [1, ]

I(c) = [2, ]

I(d) = [3, ]
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DFS can be used to solve many classicial problems in computer
science. In this course, we will see two of those problems. The first
one is cycle detection, as we discuss next.
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Cycle Detection

Problem Input:

A directed graph.

a

c f b

d
e

g

Problem Output:

A boolean value indicating whether the graph contains a cycle.
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First Step: DFS

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]
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Second Step: Find Back Edges

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]

Classify each edge of G into: forward edge, back edge, and cross
edge.

Cycle Theorem: Let T be an arbitrary DFS-forest. G contains a
cycle if and only if there is a back edge with respect to T .
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Second Step: Find Back Edges

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]

Each edge can be classified in O(1) time using the Parenthesis Theorem.

Theorem (the Parenthesis Theorem): Let u and v be two dis-
tinct vertices in G . Then:

I (u) contains I (v) if and only if u is an ancestor of v in the
DFS-forest.

I (u) and I (v) are disjoint if and only if neither u nor v is
an ancestor of the other.
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Second Step: Find Back Edges

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]

If G is cyclic, how would you use DFS to find a cycle?
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Next, we revisit the white path theorem, by far the most impor-
tant property of DFS.
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White Path Theorem: Let u be a vertex in G . Consider the
moment right before u enters the stack in the DFS algorithm.
Then, a vertex v becomes a proper descendant of u in the DFS-
forest if and only if the following is true at this moment:

there is a path from u to v including only white vertices.
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Example 1

Right before c is pushed into the stack, we have:

a

b

c

d
e

f

g

S = a

DFS Tree
a

Final DFS Tree
a

c b

d

g

e

f

← c
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Example 2

Right before d is pushed into the stack, we have:

a

b

c

d
e

f

g

S = ac

DFS Tree
a

Final DFS Tree
a

c b

d

g

e

f

← d

c
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So far our discussion has focused on directed graphs. Next, we will
see how DFS executes on undirected graphs.
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DFS on an Undirected Graph

a

b

c

d
e

f

g

Final DFS Tree
a

c

b

d

g

e

f

Classify each edge of G into

tree edge if it appears in the DFS tree produced;

back edge otherwise.

Lemma: For each edge {u, v} in G , it must hold that, in the DFS
tree produced, either u is an ancestor of v or v is an ancestor of u.

Try proving the lemma with the White Path Theorem.
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