
CSCI2100: Quiz 2

Name: Student ID:

Problem 1 (20%). Suppose that we use quick sort to sort the arrayA = (35, 12, 5, 55, 43, 78, 90, 82).
Remember that the algorithm first randomly picks a pivot element from A and then solves two
subproblems recursively. Let us assume that the pivot is 35. What are the input arrays of those
two subproblems, respectively?

Solution. (12, 5), (55, 43, 78, 90, 82).

Problem 2 (20%). Let A be the following array of 10 integers: (8, 5, 6, 2, 12, 1, 10, 17, 11, 9).
Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain
from 1 to 20. Recall that the algorithm (as described in the class) generates an array B where each
element is either 0 or 1. Give the content of B. You are reminded that in this course we adopt the
convention that array indexes start from 1 (i.e., the first element of B is B[1]).

Solution. (1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0).

Problem 3 (60%). Let S1 be a set of n integers that have been sorted in an array. Let S2 be
another set of m integers that have not been sorted. Answer the following questions.

1. (30%) Give an algorithm to find S1 ∩ S2 in O(m log n) time.

2. (30%) Suppose that all the integers in S1 are in the domain from 1 to 100n (whereas the
domain for S2 is arbitrary). Give an algorithm to find S1 ∩ S2 in O(n+m) time.

Solution.

1. Let A1 be the array storing S1. For each integer e ∈ S2, check whether e ∈ S1 with binary
search and, if so, output e. Each binary search costs O(log n) time. Thus, the total cost is
O(m log n).

2. Let A1 be the array storing S1. Discard from S2 all the integers that are outside the range
[1, 100n]. Use counting sort to sort (the remaining elements of) S2 in O(m+100n) = O(m+n)
time; let A2 be the sorted array. Then, perform a synchronous scan over A1 and A2 to output
S1 ∩ S2 as follows. First, set i = 1 and j = 1. Then, repeat the following until i > |A1| or
j > |A2|: if A1[i] = A2[j], output A1[i] and increase both i and j by one. If A1[i] > A2[j],
increase j by one; if A1[i] < A2[j], increase i by one. The synchronous scan takes O(m+ n).
So the overall cost is O(n+m).

