CSCI2100: Quiz 2

Name:

Student ID:

Problem 1 (20%). Suppose that we use quick sort to sort the array A = (35, 12, 5, 55, 43, 78, 90, 82). Remember that the algorithm first randomly picks a pivot element from A and then solves two subproblems recursively. Let us assume that the pivot is 35. What are the input arrays of those two subproblems, respectively?

Solution. (12, 5), (55, 43, 78, 90, 82).

Problem 2 (20%). Let A be the following array of 10 integers: (8, 5, 6, 2, 12, 1, 10, 17, 11, 9). Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain from 1 to 20. Recall that the algorithm (as described in the class) generates an array B where each element is either 0 or 1. Give the content of B. You are reminded that in this course we adopt the convention that array indexes start from 1 (i.e., the first element of B is B[1]).

Solution. (1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0).

Problem 3 (60%). Let S_1 be a set of *n* integers that have been sorted in an array. Let S_2 be another set of *m* integers that have *not* been sorted. Answer the following questions.

- 1. (30%) Give an algorithm to find $S_1 \cap S_2$ in $O(m \log n)$ time.
- 2. (30%) Suppose that all the integers in S_1 are in the domain from 1 to 100*n* (whereas the domain for S_2 is arbitrary). Give an algorithm to find $S_1 \cap S_2$ in O(n+m) time.

Solution.

- 1. Let A_1 be the array storing S_1 . For each integer $e \in S_2$, check whether $e \in S_1$ with binary search and, if so, output e. Each binary search costs $O(\log n)$ time. Thus, the total cost is $O(m \log n)$.
- 2. Let A_1 be the array storing S_1 . Discard from S_2 all the integers that are outside the range [1, 100n]. Use counting sort to sort (the remaining elements of) S_2 in O(m+100n) = O(m+n) time; let A_2 be the sorted array. Then, perform a synchronous scan over A_1 and A_2 to output $S_1 \cap S_2$ as follows. First, set i = 1 and j = 1. Then, repeat the following until $i > |A_1|$ or $j > |A_2|$: if $A_1[i] = A_2[j]$, output $A_1[i]$ and increase both i and j by one. If $A_1[i] > A_2[j]$, increase j by one; if $A_1[i] < A_2[j]$, increase i by one. The synchronous scan takes O(m+n). So the overall cost is O(n+m).