
CSCI 2100: Project (2025)

Prepared by Yufei Tao

The goal of this project is to implement a Real-Time Stock Market Data Tracker.

For each stock, you should store three fields:

• ID: an integer uniquely assigned to the stock;

• price: a positive float number representing the current price of the stock;

• vol: a positive integer representing the trading volume of the stock.

Your system should support the following operations:

• insert-new-stock(x, p): insert a new stock with an ID x whose current price is p. You
should first check whether a stock with the same id already exists; if so, ignore the operation.
Otherwise, create the stock and set its volume to 0.

• update-price(x, p): update the price of the stock with ID x to p. You should first check
whether a stock with ID x indeed exists; if not, ignore the operation.

• increase-volume(x, vinc): increase the volume of the stock with ID x by vinc. You should
first check whether a stock with ID x indeed exists; if not, ignore the operation.

• lookup-by-id(x): find the price and volume of the stock with ID x if such a stock exists.

• price-range(p1, p2): return the IDs of all the stocks whose prices are in the interval [p1, p2].

• max-vol: return the highest volume among all the stocks and one stock having this volume.

If n is the number of stocks in the system currently, then your implementation should have the
following guarantees:

• insert-new-stock: O(log n) time.

• update-price: O(log n) time.

• increase-volume: O(log n) time.

• lookup-by-id: O(1) expected time.

• price-range: O((1 + k) · log n) where k is the number of IDs reported.

• max-vol: O(log n) time.

Programming Language. You can use C++ (including variants like C, C#, ...), Java, or Python.
There are no constraints in the libraries you can use. You are also allowed to use any AI tools (e.g.,
ChatGPT and Copilot).

Deliverables.

1. Source code.

1



2. A report, which is a pdf document that explains

• how you achieve the required time guarantees, detailing the data structures and algo-
rithms deployed;

• how the above data structures and algorithms are implemented in your source code.

3. A file containing a list of operations that can be used to test your source code. The list should
satisfy all the following requirements:

• It should start with 10000 insert-new-stock operations to insert 10000 different stocks
into the system. The ID of each stock should be randomly generated in the domain from
1 to 1000000.

• Each of the 10000 stocks must have its price updated at least once. The new price of a
stock should be generated randomly in the range from 1 to 100.

• Each of the 10000 stocks must have its volume updated at least once. The parameter
vinc of each operation should be generated randomly from 1 to 100.

• After every 1000 update-price operations, you should perform a price-range(p, p+2)
operation where p is the price specified in the last update-price (among the preceding
1000 update-price operations).

• After every 100 increase-volume operations, you should perform a max-vol operation.

• The operation list should end with 10000 lookup-by-id operations where every stock
has its ID looked up once.

The total number of operations in your list should be at least 40110.

4. A “readme” file explaining your program can be compiled and tested.

2


