Single Source Shortest Paths with Positive Weights

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Single Source Shortest Paths with Positive Weights

1/28

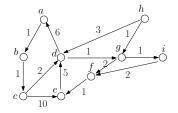
< ロ > < 同 > < 回 > < 回 >

In this lecture, we will revisit the **single source shortest path** (SSSP) problem. Recall that we have already learned that BFS solves the problem efficiently when all the edges have the **same** weight. Today, we will see how to solve the problem in a more general situation where the edges can have arbitrary positive weights.

2/28

イロト イポト イヨト イヨト

Weighted Graphs


Let G = (V, E) be a directed graph. Let w be a function that maps each edge in E to a positive integer value. Specifically, for each $e \in E$, w(e) is a **positive** integer value, which we call the **weight** of e.

A directed weighted graph is defined as the pair (G, w).

3/28

4月 とうきょうきょう

The integer on each edge indicates its weight. For example, w(d,g) = 1, w(g,f) = 2, and w(c,e) = 10.

Yufei Tao

Single Source Shortest Paths with Positive Weights

4/28

- A I I A I I A

A 10

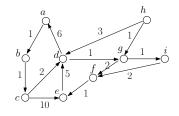
Shortest Path

Consider a directed weighted graph defined by a directed graph G = (V, E) and function w.

Consider a path in $G: (v_1, v_2), (v_2, v_3), ..., (v_{\ell}, v_{\ell+1})$, for some integer $\ell \geq 1$. We define the **length** of the path as

$$\sum_{i=1}^{\ell} w(v_i, v_{i+1}).$$

Recall that we may also denote the path as $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$.


Given two vertices $u, v \in V$, a **shortest path** from u to v is a path from u to v that has the minimum length among all the paths from u to v.

If v is unreachable from u, then the shortest path distance from u to v is ∞ .

5/28

イロト 不得 トイヨト イヨト ニヨー

- The path $c \rightarrow e$ has length 10.
- The path $c \rightarrow d \rightarrow g \rightarrow f \rightarrow e$ has length 6.

The first path is a shortest path from c to e.

1 b Single Source Shortest Paths with Positive Weights

6/28

→ Ξ →

< □ > < 同 >

Single Source Shortest Path (SSSP) with Positive Weights

Let (G, w) with G = (V, E) be a directed weighted graph, where w maps every edge of E to a positive value.

Given a vertex *s* in *V*, the goal of the **SSSP problem** is to find, for every other vertex $t \in V \setminus \{s\}$, a shortest path from *s* to *t*, unless *t* is unreachable from *s*.

7/28

不同 医子宫 医子宫下

Next, we will first explain the Dijkstra's algorithm for solving the SSSP problem, which outputs a **shortest path tree** that encodes all the shortest paths from the source vertex s.

Yufei Tao

・ロト ・同ト ・ヨト ・ヨト

The Edge Relaxation Idea

For every vertex $v \in V$, we will — at all times — maintain a value dist(v) that represents the length of the shortest path from s to v found so far.

At the end of the algorithm, we will ensure that every dist(v) equals the precise shortest path distance from s to v.

A core operation in our algorithm is called **edge relaxation**:

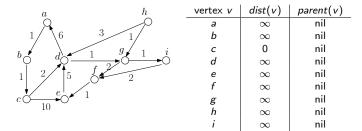
- Given an edge (u, v), we relax it as follows:
 - If dist(v) < dist(u) + w(u, v), do nothing;
 - Otherwise, reduce dist(v) to dist(u) + w(u, v).

9/28

(日本) (日本) (日本)

Dijkstra's Algorithm

- Set parent(v) = nil for all vertices $v \in V$
- Set dist(s) = 0, and $dist(v) = \infty$ for all other vertices $v \in V$


- Repeat the following until S is empty:
 - 5.1 Remove from S the vertex u with the smallest dist(u). /* next we relax all the outgoing edges of u */
 - 5.2 for every outgoing edge (u, v) of u5.2.1 if dist(v) > dist(u) + w(u, v) then set dist(v) = dist(u) + w(u, v), and parent(v) = u

10/28

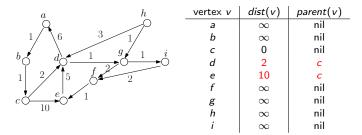
・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Suppose that the source vertex is *c*.

$$S = \{a, b, c, d, e, f, g, h, i\}.$$

э


11/28

< A ▶

< ∃ >

Example

Relax the out-going edges of c (because dist(c) is the smallest in S):

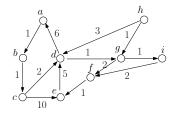
 $S = \{a, b, d, e, f, g, h, i\}.$ Note that *c* has been removed!

Example

Relax the out-going edges of d (because dist(d) is the smallest in S):

a h	vertex v	dist(v)	parent(v)
β	а	8	d
1/6 $3/1/$	Ь	∞	nil
	с	0	nil
$b \circ d \circ \frac{1}{2} \circ \frac{1}{2$	d	2	с
1 2 5 5 2	е	10	с
	f	∞	nil
	g	3	d
0^{-10}	h	∞	nil
	i	∞	nil

$$S = \{a, b, e, f, g, h, i\}.$$


= nar

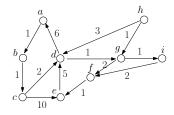
13/28

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Example

Relax the out-going edges of g:

vertex v	dist(v)	parent(v)
а	8	d
Ь	∞	nil
с	0	nil
d	2	с
е	10	с
f	5	g
g	3	d
h	∞ 4	nil
i	4	g

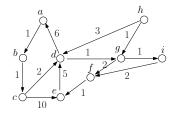

AP.

$$S = \{a, b, e, f, h, i\}.$$

э

Example

Relax the out-going edges of *i*:

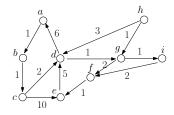

vertex v	dist(v)	parent(v)
а	8	d
Ь	∞	nil
с	0	nil
d	2	с
е	10	с
f	5	g
g	3	d
h	${\infty \over 4}$	nil
i	4	g

 $S = \{a, b, e, f, h\}.$

э

Example

Relax the out-going edges of *f*:

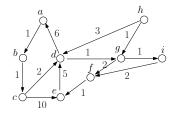

vertex v	dist(v)	parent(v)
а	8	d
Ь	∞	nil
с	0	nil
d	2	с
е	6	f
f	5	g
g	3	d
h	∞ 4	nil
i	4	g

 $S = \{a, b, e, h\}.$

э

Example

Relax the out-going edges of e:


vertex v	dist(v)	parent(v)
а	8	d
Ь	∞	nil
с	0	nil
c d	2	с
е	6	f
f	5	g
g	3	d
ĥ	∞ 4	nil
i	4	g

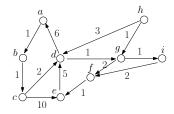
 $S = \{a, b, h\}.$

э

Example

Relax the out-going edges of a:

vertex v	dist(v)	parent(v)
а	8	d
Ь	9	а
c d	0	nil
d	2	с
е	6	f
f	5	g
g	3	d
h	∞ 4	nil
i	4	g


A 10 < E

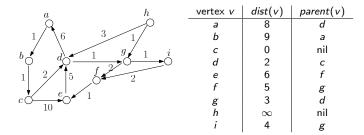
 $S = \{b, h\}.$

э

Example

Relax the out-going edges of *b*:

vertex v	dist(v)	parent(v)
а	8	d
Ь	9	а
с	0	nil
d	2	с
е	6	f
f	5	g
g	3	d
h	∞ 4	nil
i	4	g


A 10 < ∃ >

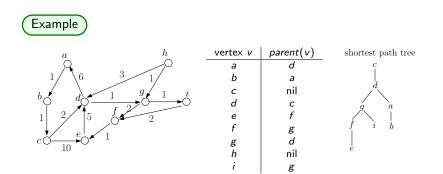
 $S = \{h\}.$

э

Relax the out-going edges of h:

 $S = \{\}.$ All the shortest path distances are now final.

ъ Single Source Shortest Paths with Positive Weights


э

20/28

A 10 4 3 b

Constructing the Shortest Path Tree

For every vertex v, if u = parent(v) is not nil, then make v a child of u.

21/28

< A >

It will be left as an exercise for you to to implement Dijkstra's algorithm in $O((|V| + |E|) \cdot \log |V|)$ time. You have already learned all the data structures for this purpose. Now it is time to practice using them.

Single Source Shortest Paths with Positive Weights

-

22/28

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

Lemma: When vertex v is removed from S, dist(v) equals precisely the shortest path distance — denoted as spdist(v) — from s to v.

The correctness of Dijkstra's algorithm follows from the lemma.

Single Source Shortest Paths with Positive Weights

-

23/28

Correctness

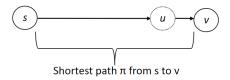
We will prove the claim by induction on the sequence of vertices removed.

Base case:

This is obviously true for the first vertex removed, which is *s* itself with dist(s) = 0.

Inductive:

Assume the claim is true with respect to all the vertices already removed. Let v be the next node to be removed. We need to prove dist(v) = spdist(v).


-

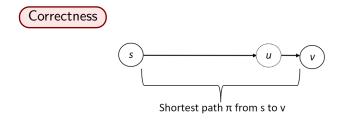
24/28

・ 戸 ト ・ ヨ ト ・ ヨ ト

Correctness

Consider an arbitrary shortest path π from s to v. Let u be the vertex right before v on π .

Claim: *u* must have been removed from *S*.


Our target lemma follows from the above claim because, by our inductive assumption, dist(u) = spdist(u) when u was removed. Then, the algorithm relaxed the edge (u, v), which must have set dist(v) = spdist(u) + w(u, v) = spdist(v).

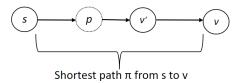
Single Source Shortest Paths with Positive Weights

-

25/28

・ 同 ト ・ ヨ ト ・ ヨ ト

Stronger claim: All the nodes on π from *s* to *u* must have been removed.

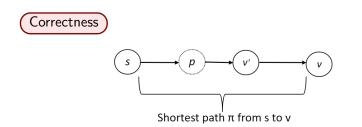

Single Source Shortest Paths with Positive Weights

26/28

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Correctness

We will prove the stronger claim by contradiction.



Suppose the statement is not true. When v is to be removed from S, another vertex on π — let it be v' — still remains in S. Define p as the vertex right before v' on π .

Single Source Shortest Paths with Positive Weights

27/28

周 ト イ ヨ ト イ ヨ ト

By the inductive assumption, dist(p) = spdist(p) when p was removed. Hence, after relaxing the edge (p, v'), we have dist(v') = spdist(p) + w(p, v') = spdist(v').

But this means $dist(v') = spdist(v') < spdist(v) \le dist(v)!$

Hence, v' should be the next vertex to be removed from *S*, contradicting the definition of *v*.

Single Source Shortest Paths with Positive Weights

28/28