
1/41

Depth First Search

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Depth First Search

2/41

Today, we will discuss the depth first search (DFS) algorithm, which is
an elegant algorithm for solving many non-trivial problems. In this
lecture, we will see one such problem: cycle detection.

The DFS algorithm has many interesting properties, among which the
most important one is the white path theorem.

Yufei Tao Depth First Search

3/41

Paths and Cycles

Let G = (V ,E) be a directed graph.

Recall:

A path in G is a sequence of edges (v1, v2), (v2, v3), ..., (vℓ, vℓ+1) —
for some integer ℓ ≥ 1 — where v1, v2, ..., vℓ+1 are distinct vertices.
We may also denote the path as v1 → v2 → ... → vℓ+1.

We now define:

A cycle in G is a sequence of edges (v1, v2), (v2, v3), ..., (vℓ, v1) —
for some integer ℓ ≥ 1 — where v1, v2, ..., vℓ are distinct vertices.
We may also denote the path as v1 → v2 → ... → vℓ+1 → v1.

Yufei Tao Depth First Search

4/41

Example

a

b

c

d

e

f

g

h

i

A cycle: d → g → f → e → d .
Another one: d → g → i → f → e → d .

Yufei Tao Depth First Search

5/41

Directed Acyclic/Cyclic Graphs

If a directed graph contains no cycles, we say that it is a directed
acyclic graph (DAG). Otherwise, G is cyclic.

Example

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

Cyclic DAG

Yufei Tao Depth First Search

6/41

The Cycle Detection Problem

Let G = (V ,E) be a directed graph. Determine whether it is a DAG.

Yufei Tao Depth First Search

7/41

Next, we will describe the depth first search (DFS) algorithm to
solve the problem in O(|V |+ |E |) time.

DFS outputs a tree, called the DFS-tree, which allows us to decide
whether the input graph is a DAG.

Yufei Tao Depth First Search

8/41

DFS

At the beginning, color all vertices in the graph white and create an
empty DFS tree T .

Create a stack S . Pick an arbitrary vertex v . Push v into S , and color it
gray (which means “in the stack”). Make v the root of T .

Yufei Tao Depth First Search

9/41

Example

Suppose that we start from a.

a

b

c

d

e

f

g

h

i

a
DFS tree

S = (a).

Yufei Tao Depth First Search

10/41

DFS

Repeat the following until S is empty.

1 Let v be the vertex that currently tops the stack S (do not remove
v from S).

2 Does v still have a white out-neighbor?

2.1 If so, let it be u.

Push u into S , and color u gray.
Make u a child of v in the DFS-tree T .

2.2 Otherwise, pop v from S and color it black (meaning v is
done).

If there are still white vertices, repeat the above by restarting from an
arbitrary white vertex v ′, creating a new DFS-tree rooted at v ′.

Yufei Tao Depth First Search

11/41

Running Example

Top of stack: a, which has white out-neighbors b, d . Suppose we access
b first. Push b into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

S = (a, b).

Yufei Tao Depth First Search

12/41

Running Example

After pushing c into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

S = (a, b, c).

Yufei Tao Depth First Search

13/41

Running Example

Now c tops the stack. It has white out-neighbors d and e. Suppose we
visit d first. Push d into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

S = (a, b, c , d).

Yufei Tao Depth First Search

14/41

Running Example

After pushing g into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

S = (a, b, c , d , g).

Yufei Tao Depth First Search

15/41

Running Example

Suppose we visit the (white) out-neighbor f of g first. Push f into S

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

S = (a, b, c , d , g , f).

Yufei Tao Depth First Search

16/41

Running Example

After pushing e into S :

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

S = (a, b, c , d , g , f , e).

Yufei Tao Depth First Search

17/41

Running Example

e has no white out-neighbors. So pop it from S and color it black.
Similarly, f has no white out-neighbors. Pop it from S and color it black.

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

S = (a, b, c , d , g).

Yufei Tao Depth First Search

18/41

Running Example

Now g tops the stack again. It still has a white out-neighbor i . So, push
i into S .

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

i

S = (a, b, c , d , g , i).

Yufei Tao Depth First Search

19/41

Running Example

After popping i , g , d , c , b, a:

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

g

f

e

i

S = ().

Yufei Tao Depth First Search

20/41

Running Example

Now there is still a white vertex h. So we perform another DFS starting
from h.

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

S = (h).

Yufei Tao Depth First Search

21/41

Running Example

Pop h. The end.

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

S = ().

Note that we have created a DFS-forest, which consists of 2 DFS-trees.

Yufei Tao Depth First Search

22/41

The property below follows directly from the way DFS runs.

The Ancestor-Descendent Property: Let u and v be two distinct
vertices in G . Then, u is an ancestor of v in the DFS-forest if and
only if the following holds: u is already in the stack when v enters
the stack.

Yufei Tao Depth First Search

23/41

Time Analysis

DFS can be implemented efficiently as follows.

Store G in the adjacency list format.

For every vertex v , remember which is the next out-neighbor to
explore.

O(|V |+ |E |) stack operations.

Use an array to remember the colors of all vertices.

The total running time is O(|V |+ |E |).

Yufei Tao Depth First Search

24/41

Next, we will see how to use the DFS forest to detect cycles.

Yufei Tao Depth First Search

25/41

Edge Classification

Suppose that we have already built a DFS-forest T .

Let (u, v) be an edge in G (remember that the edge is directed from u to
v). It can be classified into

1 forward edge if u is a proper ancestor of v in a DFS-tree of T ;

2 back edge if u is a descendant of v in a DFS-tree of T ;

3 cross edge if neither of the above applies.

Yufei Tao Depth First Search

26/41

Example

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

Forward edges:
(a, b), (a, d), (b, c), (c , d), (c , e), (d , g), (g , f), (g , i), (f , e).

Back edge: (e, d).

Cross edges: (i , f), (h, d), (h, g).

Yufei Tao Depth First Search

27/41

Cycle Theorem

Theorem: Let T be an arbitrary DFS-forest. G contains a cycle
if and only if there is a back edge with respect to T .

The “if-direction” (⇐) is obvious. Proving the “only-if direction” (⇒) is

more difficult and will be done later.

Yufei Tao Depth First Search

28/41

Issue: How to test the type of an edge?

We can do so in constant time. For this purpose, we need to slightly
augment the DFS-forest by remembering when each vertex enters
and leaves the stack.

Yufei Tao Depth First Search

29/41

Augmenting DFS

Maintain a counter c , which is initially 0. Every time we perform a push
or pop, increment c by 1.

For every vertex v , define:

its discovery time d-tm(v) as the value of c right after v is pushed
into the stack;

its finish time f -tm(v) as the value of c right after v is popped
from the stack.

Define the time interval of v as I (v) = [d-tm(v), f -tm(v)].

It is straightforward to obtain I (v) for all v ∈ V by paying O(|V |) extra
time on top of DFS’s running time. (Think: Why?)

Yufei Tao Depth First Search

30/41

Example

a

b

c

d

e

f

g

h

i

a

DFS forest

b

c

d

g

f

e

i

h

I (a) = [1, 16]
I (b) = [2, 15]
I (c) = [3, 14]
I (d) = [4, 13]
I (g) = [5, 12]
I (f) = [6, 9]
I (e) = [7, 8]
I (i) = [10, 11]
I (h) = [17, 18]

Yufei Tao Depth First Search

31/41

The property below follows directly from the stack’s first-in-last-out
property:

The Interval Property: For any two vertices u and v in G , their
time intervals must satisfy one of the following:

I (u) contains I (v);

I (v) contains I (u);

they are disjoint.

Yufei Tao Depth First Search

32/41

Combining the ancestor-descendant property with the interval property
gives:

Theorem (the Parenthesis Theorem): Let u and v be two dis-
tinct vertices in G . Then:

I (u) contains I (v) if and only if u is an ancestor of v in the
DFS-forest.

I (u) and I (v) are disjoint if and only if neither u nor v is
an ancestor of the other.

Yufei Tao Depth First Search

33/41

Cycle Detection

We can now detect whether G has a cycle:

for every edge (u, v) in G do
if I (v) contains I (u) then

return “cycle exists”
return “no cycle”

Only O(|E |) extra time is needed.

We now conclude that the cycle detection problem can be solved in
O(|V |+ |E |) time.

Yufei Tao Depth First Search

34/41

It remains to prove the cycle theorem. In fact, it is a corollary of
the white path theorem, another important theorem about DFS.

Yufei Tao Depth First Search

35/41

White Path Theorem

Theorem: Let u be a vertex in G . Consider the moment right
before u enters the stack in the DFS algorithm. Then, a vertex v
becomes a proper descendant of u in the DFS-forest if and only if
the following is true at this moment:

there is a path from u to v including only white vertices.

We will prove the theorem at the end of this lecture.

Yufei Tao Depth First Search

36/41

Example

Consider the moment in our previous example right before g just entered
the stack. S = (a, b, c , d).

a

b

c

d

e

f

g

h

i

a
DFS tree

b

c

d

We can see that g can reach f , e, and i via white paths. Therefore, f , e,

and i are all proper descendants of g in the DFS-forest; and g has no

other descendants.

Yufei Tao Depth First Search

37/41

Proving the Only-If Direction (⇒) of the Cycle Theorem

We will now prove that if G has a cycle, then there must be a back edge
in the DFS-forest.

Suppose that the cycle is v1 → v2 → ... → vℓ → v1.

Let vi , for some i ∈ [1, ℓ], be the vertex in the cycle that is the first to
enter the stack. Hence, at the moment right before vi enters the stack,
vi can reach all the other vertices in the cycle via white paths. By the
white path theorem, all the other vertices in the cycle must be proper
descendants of vi in the DFS-forest. Hence, the edge pointing to vi in
the cycle must be a back edge.

Yufei Tao Depth First Search

38/41

Proof of the White Path Theorem

Yufei Tao Depth First Search

39/41

Theorem: Let u be a vertex in G . Consider the moment right
before u enters the stack in the DFS algorithm. Then, a vertex v
becomes a proper descendant of u in the DFS-forest if and only if
the following is true at this moment:

there is a path from u to v including only white vertices.

Proof: The “only-if direction” (⇒): Let

v be a descendant of u in the DFS tree;

π be the path from u to v in the tree.

Clearly, π is also a path from u to v in G . All the nodes on π except for

u are proper descendants of u and, by the ancestor-descendant property,

must enter the stack after u. Hence, π must be white at the moment

right before u enters the stack.

Yufei Tao Depth First Search

40/41

The “if direction” (⇐): Right before u enters the stack, a white path
π exists from u to v . We will prove that all the vertices on π must be
descendants of u in the DFS-forest.

Suppose that this is not true. Let v ′ be the first vertex on π — in the
order from u to v — that is not a descendant of u in the DFS-forest.
Clearly v ′ ̸= u. Let u′ be the vertex preceding v ′ on π (note: u′ may be
u).

u v
u′

v′

π

By the way u′ is defined, it must be a descendant of u in the DFS-forest.

Yufei Tao Depth First Search

41/41

u v
u′

v′

π

Consider the moment when u′ turns black (i.e., u′ leaving the stack).

1 The color of v ′ cannot be white.

Otherwise, v ′ is a white out-neighbor of u′, in which case u′ cannot
be turning black.

2 Hence, the color of v ′ must be gray or black.

Recall that when u entered stack, v ′ was white. Therefore, v ′ must
have been pushed into the stack while u was still in the stack. By
the ancestor-descendant property, v ′ must be a descendant of u in
the DFS-forest. This, however, contradicts the definition of v ′.

Yufei Tao Depth First Search

