
1/27

Hashing

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Hashing

2/27

This lecture will revisit the dictionary search problem, where we want to

locate an integer q in a set of size n or declare the absence of q. Binary

search solves the problem in O(log n) time (assuming a sorted array on

the n integers). We will reduce the cost to O(1) in expectation with a

structure called the hash table.

Yufei Tao Hashing

3/27

The Dictionary Search Problem (Redefined)

S is a set of n integers. We want to preprocess S into a data structure to
answer the following queries efficiently:

(Dictionary search) query: given an integer q, decide whether
q ∈ S .

We will measure a data structure’s performance by:

Space consumption: the number of memory cells occupied;

Query cost: query time;

Preprocessing cost: time of building the structure.

Yufei Tao Hashing

4/27

Dictionary Search — Solution Based on Binary Search

We can solve the problem by storing S in a sorted array of length n and
answering a query with binary search. This ensures:

Space consumption: O(n);

Query cost: O(log n);

Preprocessing cost: O(n log n).

Yufei Tao Hashing

5/27

Dictionary Search — This Lecture (Hash Table)

We will improve the previous solution in expectation:

Space consumption: O(n)

Query cost: O(log n) ⇒ O(1) in expectation;

Preprocessing cost: O(n log n) ⇒ O(n).

Yufei Tao Hashing

6/27

Hashing

Main idea: divide S into small disjoint subsets such that a query only
needs to search one subset.

We assume that every integer is in [1,U].
Denote by [m] the set of integers from 1 to m.

A hash function h is a function from [U] to [m]. Namely, given
any integer k , the function’s output h(k) is an integer in [m].

The value h(k) is called the hash value of k .

Yufei Tao Hashing

7/27

Hash Table — Preprocessing

First, choose an integer m > 0, and a hash function h from [U] to [m].

Then, preprocess S as follows:

1 Create an array H of length m.

2 For each i ∈ [1,m], create an empty linked list Li . Keep the head
and tail pointers of Li in H[i].

3 For each integer x ∈ S :

Calculate the hash value h(x).
Insert x into Lh(x).

Space consumption: O(n +m).
Preprocessing time: O(n +m).

Yufei Tao Hashing

8/27

Hash Table — Querying

We answer a query with value q as follows:

1 Calculate the hash value h(q).

2 Scan the whole Lh(q). If q is not found, answer “no”; otherwise,
answer “yes”.

Query time: O(|Lh(q)|), where |Lh(q)| is the number of elements in
Lh(q).

Yufei Tao Hashing

9/27

Example

Let S = {34, 19, 67, 2, 81, 75, 92, 56}. Suppose that we choose m = 5
and h(k) = 1 + (k mod m).

NIL

H

75

81

67

56

NIL

NIL

2 NIL92

NIL1934

L1

L2

L3

L4

L5

To answer a query with q = 57, we scan all the elements in L3 and

answer “no”. For this hash function, the maximum query time is the cost

of scanning a linked list of 3 elements.

Yufei Tao Hashing

10/27

Example

Let S = {34, 19, 67, 2, 81, 75, 92, 56}. Suppose that we choose m = 5,
and h(k) = 2.

H

758167 56 NIL2

NIL

1934

L1

L2

L3

L4

L5

92

NIL

NIL

NIL

For this hash function, the maximum query time is the cost of scanning a

linked list of 8 elements (i.e., the worst possible).

Yufei Tao Hashing

11/27

A good hash function should create linked lists of roughly the same
size.

Next we will introduce a technique that can choose a good hash function
to guarantee O(1) expected query time.

Yufei Tao Hashing

12/27

Let H be a family of hash functions from [U] to [m]. H is universal if
the following holds:

Let k1, k2 be two distinct integers in [U]. By picking a function
h ∈ H uniformly at random, we guarantee that

Pr [h(k1) = h(k2)] ≤ 1/m.

We will prove that universality ensures O(1) expected query time.
Then, we will describe a way to obtain such a good hash function.

Yufei Tao Hashing

13/27

Analysis of Query Time under Universality

We focus on the case where q does not exist in S (the case where it does
is similar). Recall that our algorithm probes all the elements in the linked
list Lh(q). The query cost is therefore O(|Lh(q)|).

Define random variable Xi (i ∈ [1, n]) to be 1 if the i-th element e of S
has the same hash value as q (i.e., h(e) = h(q)), and 0 otherwise. Thus:

|Lh(q)| =
n∑

i=1

Xi

Yufei Tao Hashing

14/27

Analysis of Query Time under Universality

By universality, Pr [Xi = 1] ≤ 1/m, meaning that

E [Xi] = 1 · Pr [Xi = 1] + 0 · Pr [Xi = 0]

≤ 1/m.

Hence:

E [|Lh(q)|] =
n∑

i=1

E [Xi] ≤ n/m.

By choosing m = Θ(n), we have n/m = O(1).

Yufei Tao Hashing

15/27

Designing a Universal Function

We now construct a universal family H of hash functions from [U] to [m].

Pick a prime number p such that p ≥ m and p ≥ U.

For every α ∈ {1, 2, ..., p− 1} and every β ∈ {0, 1, ..., p− 1}, define:

hα,β(k) = 1 + (((αk + β) mod p) mod m).

This defines p(p − 1) hash functions, which constitute our H.

The proof of universality can be found in the appendix (not required
for CSCI2100)

Yufei Tao Hashing

16/27

Existence of the Prime Number

Is it always possible to choose a desired prime number p?

Recall that the RAM model is defined with a word length w , namely, the
number of bits in a word. Hence, U ≤ 2w − 1.

Number theory shows that there is at least one prime number between x
and 2x . Hence, one can prepare in advance such a prime number p in the
range [2w , 2w+1] and use this p to construct a universal hash family.

Yufei Tao Hashing

17/27

We have shown that, for any set S of n integers, it is always possible to
construct a hash table with the following guarantees on the dictionary
search problem:

Space O(n).

Preprocessing time O(n).

Query time O(1) in expectation.

Yufei Tao Hashing

18/27

Appendix: Proof of Universality
(not required for CSCI2100)

Yufei Tao Hashing

19/27

The Prime Ring

Denote by Zp the set of integers {0, 1, ..., p − 1}. Zp forms a
commutative ring under “+” and “·” (both defined using modulo p).
This means:

Zp is closed under + and ·.
+ satisfies commutativity and associativity.

a+ b = b + a (mod p) and a+ b + c = a+ (b + c) (mod p)

+ has a zero element, that is, 0 + a = a (mod p).

Every element a has an additive inverse −a, that is, a+ (−a) = 0
(mod p).

· satisfies commutativity and associativity.

a · b = b · a (mod p) and a · b · c = a · (b · c) (mod p)

· modulo p has a one element, that is, 1 · a = a (mod a).

+ and · satisfy distributivity.

a · (b + c) = a · b + a · c (mod p)
(b + c) · a = b · a+ c · a (mod p)

Yufei Tao Hashing

20/27

The Prime Ring

The ring Zp has several crucial properties. Let us start with:

Lemma: Let a be a non-zero element in Zp. Then, a · j ̸= a · k
(mod p) for any j , k ∈ Zp with j ̸= k .

Proof: Suppose without loss of generality j > k . Assume a · j = a · k
(mod p), then a · (j − k) = 0 (mod p). This means that a · (j − k) must
be a multiple of p. Since p is prime, either a or j − k must be a multiple
of p. This is impossible because a and j − k are non-zero elements in
Zp.

The lemma implies that a · 0, a · 1, ..., a · (p − 1) must take unique values

in {0, 1, ..., p − 1}.

Yufei Tao Hashing

21/27

The Prime Ring

The previous lemma implies:

Corollary: Every non-zero element a has a unique multiplicative
inverse a−1, namely, a · a−1 = 1 (mod p).

In other words, Zp is a division ring.

Yufei Tao Hashing

22/27

The Prime Ring

The next property then follows:

Lemma: Every equation a · x + b = c (mod p) where a, b, c are
in Zp and a ̸= 0 has a unique solution in Zp.

Proof:

a · x = c − b (mod p)

⇔ x = a−1 · (c − b) (mod p)

Yufei Tao Hashing

23/27

Proof of Universality

Next, we will prove that the hash family H we constructed in Slide 15 is
universal. As before, let k1 and k2 be distinct integers in [U].

Fact 1: Let

gα,β(k1) = (α · k1 + β) mod p

gα,β(k2) = (α · k2 + β) mod p

We must have: gα,β(k1) ̸= gα,β(k2).

Proof: Otherwise, it must hold that

α · k1 + β = α · k2 + β (mod p)

⇒ α · (k1 − k2) = 0 (mod p)

which is not possible. .

Yufei Tao Hashing

24/27

Proof of Universality

How many different choices are there for the pair (g(k1), g(k2))? The
answer is at most p(p − 1) according to Fact 1: there are p2 possible
pairs in Zp × Zp but we need to exclude the p pairs where the two values
are the same.

Recall that H has p(p − 1) functions.

Next, we will prove a one-to-one mapping between the possible choices of

(g(k1), g(k2)) and the hash functions in H.

Yufei Tao Hashing

25/27

Proof of Universality

Fact 2: Fix any two x , y ∈ Zp such that x ̸= y . There is a unique
pair (α, β) — with α ∈ {1, 2, ..., p − 1} and β ∈ {0, 1, ..., p − 1}
— that makes gα,β(k1) = x and gα,β(k2) = y .

Proof: Suppose that h is determined by α, β selected as explained in
Slide 15. Thus:

α · k1 + β = x (mod p)

α · k2 + β = y (mod p)

Hence:

α · (k1 − k2) = x − y (mod p)

⇒ α = (k1 − k2)
−1 · (x − y) (mod p)

⇒ β = x − (k1 − k2)
−1 · (x − y) · k1 (mod p)

Yufei Tao Hashing

26/27

Proof of Universality

Let P be the set of pairs (x , y) such that x , y ∈ Zp and x ̸= y .

By choosing α, β randomly in their respective ranges, we set
(gα,β(k1), gα,β(k2)) to a pair (x , y) ∈ P chosen uniformly at random.

Notice that h(k1) = h(k2) if and only if gα,β(k1) = gα,β(k2) (mod m).

So now the question boils down to: how many pairs (x , y) in P satisfy

x = y (mod m)?

Yufei Tao Hashing

27/27

Proof of Universality

How many pairs (x , y) in P satisfy x = y (mod m)?

For x = 0, y can take m, 2m, 3m, The number of such y ’s is no
more than ⌈p/m⌉ − 1 ≤ (p − 1)/m.

For x = 1, y can take m + 1, 2m + 1, 3m + 1, The number of
such y ’s is no more than ⌈p/m⌉ − 1 ≤ (p − 1)/m.

...

Hence, the number of such pairs is no more than p(p − 1)/m = |P|/m.

Now we conclude that the probability of h(k1) = h(k2) is at most 1/m.

Yufei Tao Hashing

