Quick Sort

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

1/12

Today, we will discuss another sorting algorithm named **quick sort**. It is a randomized algorithm that runs in $O(n^2)$ time in the **worst** case but $O(n \log n)$ time **in expectation**.

Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array A of length n.

Goal:

Produce an array that stores the elements of S in ascending order.

Yufei Tao

3/12

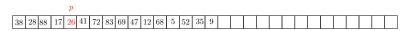
Quick Sort

- Pick an integer p from A uniformly at random, which is called the pivot.
- 2 Store the integers in another array A' such that
 - all the integers smaller than p are before p in A';
 - all the integers larger than p are after p in A'.
- \odot Sort the part of A' before p recursively (a subproblem).
- \bullet Sort the part of A' after p recursively (a subproblem).

◆□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ○ 4/12

Example

After Step 1 (suppose that 26 was randomly picked as the pivot):



After Step 2:

After Steps 3 and 4:

5/12

Quick sort is not attractive in the worst case: its worst case time is $O(n^2)$ (why?). However, quick sort is fast in expectation: we will prove that its expected time is $O(n \log n)$. Remember: this holds on **every** input array A.

□ ▶ ◀♬ ▶ ◀ 볼 ▶ ◀ 볼 ▶ ○ 월 ♥ 9 € 6/12

The rest of the slides will not be tested for CSCI2100.

First, convince yourself that it suffices to analyze the number X of comparisons. The running time is bounded by O(n+X).

Next, we will prove that $E[X] = O(n \log n)$.

Denote by e_i the i-th smallest integer in S. Consider e_i , e_j for any i, j such that $i \neq j$.

What is the probability that quick sort compares e_i and e_j ?

This question, which seems to be difficult at first glance, has a surprisingly simple answer. Let us observe:

- Every element will be selected as a pivot exactly once.
- e_i and e_j are **not** compared, if any element **between** them gets selected as a pivot **before** e_i and e_j .

For example, suppose that i = 7 and j = 12. If e_9 is the pivot, then e_i and e_j will be separated by e_9 (think: why?) and will not be compared in the rest of the algorithm.

Therefore, e_i and e_j are compared if and only if either one is the first among $e_i, e_{i+1}, ..., e_j$ picked as a pivot.

The probability is 2/(j-i+1).

10/12

Define random variable X_{ij} to be 1, if e_i and e_j are compared. Otherwise, $X_{ij} = 0$. We thus have $Pr[X_{ij} = 1] = 2/(j - i + 1)$. That is, $E[X_{ij}] = 2/(j - i + 1)$.

Clearly, $X = \sum_{i,j} X_{ij}$. Hence:

$$E[X] = \sum_{i,j:i < j} E[X_{ij}] = \sum_{i,j:i < j} \frac{2}{j - i + 1}$$

$$= 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j - i + 1}$$

$$= 2 \sum_{i=1}^{n-1} O(\log(n - i + 1))$$

$$= 2 \sum_{i=1}^{n-1} O(\log n) = O(n \log n).$$

11/12

The above analysis used the following fact:

$$1 + 1/2 + 1/3 + 1/4 + ... + 1/n = O(\log n).$$

The left-hand side is called the harmonic series.

12/12