
1/17

Two Methods for Solving Recurrences

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Two Methods for Solving Recurrences



2/17

We have seen how to analyze the running time of recursive algorithms by

recurrence. It is important to sharpen our skills in solving recurrences.

Today, we will learn two techniques for this purpose: the master theorem

and the substitution method.

Yufei Tao Two Methods for Solving Recurrences



3/17

The Master Theorem

Yufei Tao Two Methods for Solving Recurrences



4/17

The Master Theorem

Let f (n) be a function that returns a positive value for every integer
n > 0. We know:

f (1) = O(1)

f (n) ≤ α · f (⌈n/β⌉) + O(nγ · logλ n) (for n ≥ 2)

where α ≥ 1, β > 1, γ ≥ 0, and λ ≥ 0 are constants. Then:

If logβ α < γ, then f (n) = O(nγ logλ n).

If logβ α = γ, then f (n) = O(nγ logλ+1 n).

If logβ α > γ, then f (n) = O(nlogβ α).

The theorem can be proved by carefully applying the “expansion

method” we saw earlier. The details are tedious and omitted.

Yufei Tao Two Methods for Solving Recurrences



5/17

Example 1

Consider the recurrence of binary search:

f (1) ≤ c1

f (n) ≤ f (⌈n/2⌉) + c2 (for n ≥ 2)

Hence, α = 1, β = 2, γ = 0, and λ = 0. Since logβ α = γ, we know that

f (n) = O(n0 · log0+1 n) = O(log n).

Yufei Tao Two Methods for Solving Recurrences



6/17

Example 2

Consider the recurrence of merge sort:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/2⌉) + c2n (for n ≥ 2)

Hence, α = 2, β = 2, γ = 1, and λ = 0. Since logβ α = γ, we know that

f (n) = O(nγ · log0+1 n) = O(n log n).

Yufei Tao Two Methods for Solving Recurrences



7/17

Example 3

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/4⌉) + c2
√
n · log2 n (for n ≥ 2)

Hence, α = 2, β = 4, γ = 1/2, and λ = 1. Since logβ α = γ, we know

that f (n) = O(nγ · logλ+1 n) = O(
√
n log2 n).

Yufei Tao Two Methods for Solving Recurrences



8/17

Example 4

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/2⌉) + c2
√
n (for n ≥ 2)

Hence, α = 2, β = 2, γ = 1/2, and λ = 0. Since logβ α > γ, we know

that f (n) = O(nlogβ α) = O(n).

Yufei Tao Two Methods for Solving Recurrences



9/17

Example 5

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 13 · f (⌈n/7⌉) + c2n
2 (for n ≥ 2)

Hence, α = 13, β = 7, γ = 2, and λ = 0. Since logβ α < γ, we know

that f (n) = O(nγ logλ n) = O(n2).

Yufei Tao Two Methods for Solving Recurrences



10/17

The Substitution Method

Yufei Tao Two Methods for Solving Recurrences



11/17

Recall that, to prove f (n) = O(g(n)), it suffices to find an arbitrary pair
of constants c1 and c2 such that ∀n ≥ c1, f (n) ≤ c2 · g(n).

Rationale: In the substitution method, we aim to prescribe a set
of sufficient conditions for c1 and c2, and then “solve” c1 and c2
from those conditions.

We will resort to mathematical induction to achieve the purpose.

Yufei Tao Two Methods for Solving Recurrences



12/17

Example 6

Consider the recurrence:

f (1) = 1

f (n) ≤ f (n − 1) + 11n (for n ≥ 2)

We will prove f (n) = O(n2) by the substitution method.

Aim: Find c1, c2 such that f (n) ≤ c2n
2 for all n ≥ c1.

Yufei Tao Two Methods for Solving Recurrences



13/17

Base case: n = c1. We need:

f (c1) ≤ c2 · c21 ⇔ c2 ≥ f (c1)/c
2
1 (1)

Inductive case: Suppose that f (n) ≤ c2n
2 for all n ≤ k − 1 where

k ≥ 1 + c1.Then, we have:

f (k) ≤ f (k − 1) + 11k ≤ c2 · (k − 1)2 + 11k

To make sure f (k) ≤ c2k
2, it suffices to have

c2 · (k − 1)2 + 11k ≤ c2k
2

⇔ c2 ≥ 11k/(2k − 1).

For k ≥ 1, we always have 11k
2k−1 ≤ 11. Thus, it suffices to ensure

c2 ≥ 11. (2)

Any pair of c1 and c2 satisfying (1) and (2) works. For example,
we can set c1 = 1 and c2 = max{f (1)/12, 11} = 11.

Yufei Tao Two Methods for Solving Recurrences



14/17

Example 7

Consider the recurrence:

f (1) = f (2) = f (3) = 1

f (n) ≤ f (⌈n/5⌉) + f

(⌈
7n

10

⌉)
+ n (for n ≥ 4)

This is really a non-trivial recurrence (the master theorem is inapplicable
here). We will prove that f (n) = O(n) using the substitution method.

Aim: Find c1, c2 such that f (n) ≤ c2n for all n ≥ c1.

Yufei Tao Two Methods for Solving Recurrences



15/17

Base case: n = c1. We need: f (c1) ≤ c2 · c1. To make this happen, it
suffices to ensure

f (c1) ≤ c2 · c1 ⇔ c2 ≥ f (c1)/c1. (3)

Inductive case: Suppose that f (n) ≤ c2n under n ≤ k − 1 where
k ≥ 1 + c1. We have:

f (k) ≤ f (⌈k/5⌉) + f (⌈7k/10⌉) + k

≤ c2(⌈k/5⌉) + c2(⌈7k/10⌉) + k

≤ c2(k/5 + 1) + c2((7k/10) + 1) + k

= c2(9/10)k + 2c2 + k

To ensure f (k) ≤ c2k , it suffices to have:

c2(9/10)k + 2c2 + k ≤ c2k

⇔ c2(k/10− 2) ≥ k (4)

Yufei Tao Two Methods for Solving Recurrences



16/17

To simplify calculation, we demand k ≥ 21. To make this happen, it
suffices to ensure

c1 ≥ 20. (5)

When k ≥ 21, it holds that k/10− 2 > 0. With this, we derive:

(4) ⇔ c2 ≥
k

k/10− 2
=

10k

k − 20
(6)

We will further demand that k ≥ 40. To make this happen, it suffices to
ensure

c1 ≥ 39. (7)

For k ≥ 40, k − 20 ≥ k/2. So to ensure (6), it suffices to have

c2 ≥
10k

k/2
= 20. (8)

Yufei Tao Two Methods for Solving Recurrences



17/17

We now know that any pair of c1, c2 satisfying (3), (5), (7), and (8)
works. For example, we can set

c1 = 39

c2 = max{f (39)/39, 20}.

Yufei Tao Two Methods for Solving Recurrences


