
1/15

Merge Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Merge Sort



2/15

In this lecture, we will design the merge sort which sorts n elements in

O(n log n) time. The algorithm illustrates a divide and conquer

technique based on recursion.

Yufei Tao Merge Sort



3/15

Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU.

Goal:

Produce an array to store the integers of S in ascending order.

Yufei Tao Merge Sort



4/15

Recall the principle of recursion:

When dealing with a subproblem (same problem but with a smaller
input), consider it solved, and use the subproblem’s output to con-
tinue the algorithm design.

Yufei Tao Merge Sort



5/15

Merge Sort (Divide and Conquer)

1 Sort the first half of the array S (i.e., a subproblem of size n/2).

2 Sort the second half of the array S (i.e., a subproblem of size n/2).

3 Consider both subproblems solved and merge the two halves of the
array into the final sorted sequence (details later).

Yufei Tao Merge Sort



6/15

Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

First step, sort the first half of the array by recursion.

...

5 91217 26 28 3538 41 47 52686972 83 88

16

sort recursively

Yufei Tao Merge Sort



7/15

Example

Second step, sort the second half of the array by recursion:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

sort recursively

Third step, merge the two halves.

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

Yufei Tao Merge Sort



8/15

Merging

We are looking at the following merging problem.

There are two arrays — denoted as A1 and A2 — each containing
(at most) n/2 integers in ascending order. The goal is to produce
a sorted array A containing all the integers in A1 and A2.

The following shows an example of the input:

...

5 12917 2826 3538 41 47 52 68 6972 83 88

16

A2A1

Yufei Tao Merge Sort



9/15

Merging

At the beginning, set i = j = 1.

Repeat until i > n/2 or j > n/2:

1 If A1[i ] (i.e., the i-th integer of A1) is smaller than A2[j ], append
A1[i ] to A, and increase i by 1.

2 Otherwise, append A2[j ] to A, and increase j by 1.

Think: What happens if i > n/2? What will you do to complete the
merging?

Yufei Tao Merge Sort



10/15

Example

At the beginning of merging:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

Appending 5 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5

Yufei Tao Merge Sort



11/15

Example

Appending 9 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9

Appending 12 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12

Yufei Tao Merge Sort



12/15

Example

Appending 17 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12 17

And so on.

Yufei Tao Merge Sort



13/15

Running Time of Merge Sort

Let f (n) denote the worst-case running time of merge sort when executed
on an array of size n.

For n = 1, we have:

f (n) = O(1)

For n ≥ 1:

f (n) ≤ 2f (⌈n/2⌉) + O(n)

where the term 2f (⌈n/2⌉) is because the recursion sorts two arrays each

of size at most ⌈n/2⌉, and the term O(n) is the time of merging.

Yufei Tao Merge Sort



14/15

Running Time of Merge Sort

So it remains to solve the following recurrence:

f (1) ≤ c1

f (n) ≤ 2f (n/2) + c2n

where c1, c2 are constants (whose values we do not care). If n is a power
of 2, using the expansion method, we have:

f (n) ≤ 2f (n/2) + c2n

≤ 2(2f (n/4) + c2n/2) + c2n = 4f (n/4) + 2c2n

≤ 4(2f (n/8) + c2n/4) + 2c2n = 8f (n/8) + 3c2n

...

≤ 2i f (n/2i ) + i · c2n
...

(h = log2 n) ≤ 2hf (1) + h · c2n
≤ n · c1 + c2n · log2 n = O(n log n).

Yufei Tao Merge Sort



15/15

Running Time of Merge Sort

How to remove the assumption that n is a power of 2? Hint: The

rounding approach discussed in a previous lecture.

Yufei Tao Merge Sort


