
1/15

Recursion

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Recursion



2/15

This lecture will introduce a technique called recursion for designing
algorithms. Its principle is:

When dealing with a subproblem (same problem but with a smaller
input), consider it solved, and use the subproblem’s output to con-
tinue the algorithm design.

We will apply the technique to settle several problems in this course.

Today, we will see two examples. In the first, we will re-discover binary

search; in the second, we will design our first sorting algorithm.

Yufei Tao Recursion



3/15

Array

An array of length n is a sequence of n elements such that

they are stored consecutively in memory (i.e., the first
element is immediately followed by the second, and then by
the third, and so on);

every element occupies the same number of memory cells.

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

array of length 16

array of length 12

Yufei Tao Recursion



4/15

With the concept of array, we now redefine the dictionary search problem:

The Dictionary Search Problem (Redefined)

Problem Input:

A set S of n integers has been arranged in ascending order in an array of
length n. You are given the value of n and another integer v inside the
CPU.

Goal:

Design an algorithm to determine whether v exists in S .

Yufei Tao Recursion



5/15

Binary Search (Re-discovered)

1. Compare v to the middle element e of the array. If v = e, return
“yes” and done.

2. Otherwise:

2.1 If v < e, we have a subproblem: check if v is in the portion
of the array before e;

2.2 If v > e, we have a subproblem: check if v is in the portion
of the array after e.

Considering the subproblem solved, we finish the algorithm.

Think: why does it work?

Yufei Tao Recursion



6/15

Analysis of Binary Search

Recursion allows us to analyze the running time in an elegant manner.

Define f (n) to be the maximum running time of binary search on n
elements. For n = 1, clearly:

f (1) = O(1)

For n > 1:

f (n) ≤ O(1) + f (⌊n/2⌋).

Yufei Tao Recursion



7/15

Analysis of Binary Search

So it remains to solve the recurrence (c1, c2 are constants whose values
we do not care):

f (1) = c1

f (n) ≤ c2 + f (⌊n/2⌋)

Suppose, for now, that n is a power of 2. An easy way of doing so is the
expansion method, which simply expands f (n) all the way down:

f (n) ≤ c2 + f (n/2)

≤ c2 + c2 + f (n/22)

≤ c2 + c2 + c2 + f (n/23)

≤ c2 + ...+ c2︸ ︷︷ ︸
log2 n of them

+f (1)

= c2 · log2 n + c1 = O(log n).

Yufei Tao Recursion



8/15

Analysis of Binary Search

We can deal with general n (not necessarily a power of 2) using a
rounding approach. Let n′ be the least power of 2 that is larger than n.
It thus holds that n′ < 2n (otherwise, n′ is not the least).

We then have:

f (n) ≤ f (n′)

≤ c2 · log2 n′ + c1 (proved earlier)

< c2 · log2(2n) + c1

= c2(1 + log2 n) + c1

= c2 log2 n + c1 + c2 = O(log n).

Yufei Tao Recursion



9/15

Next, we switch our attention to the sorting problem, another clas-
sical problem in computer science.

Yufei Tao Recursion



10/15

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Produce an array that stores the elements of S in ascending order.

Yufei Tao Recursion



11/15

Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

Output:

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

Yufei Tao Recursion



12/15

Selection Sort

1. Find the largest integer emax in S .

2. Swap emax with the last (i.e., n-th) element of the array (after
which emax is at the end of the array).

3. We now have a subproblem: sort the first n − 1 elements.

Let us consider that the subproblem has been solved. Now, the entire
array is in ascending order. We thus finish the algorithm.

Yufei Tao Recursion



13/15

Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

After Step 2:

...

59 1217 2628 3538 41 47 52686972 83 88

16

sort these 15 elements recursively

Yufei Tao Recursion



14/15

Analysis of Selection Sort

Let f (n) be the maximum running time of selection sort when the
problem size is n. We know:

f (1) = O(1)

For n ≥ 2, we have:

f (n) ≤ O(n) + f (n − 1)

where the term O(n) captures the cost of Steps 1 and 2, and f (n − 1) is
the cost of Step 3.

Yufei Tao Recursion



15/15

Analysis of Selection Sort

So it remains to solve the recurrence (c1, c2 are constants):

f (1) = c1

f (n) ≤ c2n + f (n − 1)

Using the expansion method, we get:

f (n) ≤ c2n + f (n − 1)

≤ c2n + c2(n − 1) + f (n − 2)

≤ c2n + c2(n − 1) + c2(n − 2) + f (n − 3)

≤ c2n + c2(n − 1) + ...+ c2 · 2 + f (1)

≤ c2n(n + 1)/2 + c1

= O(n2).

We now conclude that selection sort runs in O(n2) worst-case time.

Yufei Tao Recursion


