
1/18

Binary Search and Worst-Case Analysis

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Binary Search and Worst-Case Analysis



2/18

A significant part of computer science is devoted to understanding

RAM’s power in solving specific problems. Today, we will discuss the

dictionary search problem. We will solve the problem with an algorithm

called binary search and introduce a generic method — called

worst-case analysis — for measuring the quality of algorithms.

Yufei Tao Binary Search and Worst-Case Analysis



3/18

Dictionary Search

Input: In the memory, a set S of n integers have been arranged in
ascending order at the memory cells of address 1 to n. The value of n
has been placed in Register 1 of the CPU. Another integer q has been
placed in Register 2 of the CPU.

Goal: Determine whether q exists in S .

We will refer to n as the problem size.

Yufei Tao Binary Search and Worst-Case Analysis



4/18

A “yes”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 35

A “no”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 36

Yufei Tao Binary Search and Worst-Case Analysis



5/18

The First Algorithm

Simply read the memory cell of address i , for each i ∈ [1, n] in turn. If
any of those cells equals q, return yes. Otherwise, return no.

The above is a piece of acceptable description of the same algorithm
described by the pseudocode in the next slide.

Yufei Tao Binary Search and Worst-Case Analysis



6/18

The First Algorithm in Pseudocode

1. Let n be register 1, and q be register 2
2. register i ← 1, register one ← 1
3. repeat
4. read into register x the memory cell at address i
5. if x = v then
6. return “yes” (by writing 1 to a register)
7. i ← i + one (effectively increasing i by 1)
8. until i > n
9. return “no” (by writing 0 to a register)

Yufei Tao Binary Search and Worst-Case Analysis



7/18

Running Time of the First Algorithm

The running time depends on the input. Here are two extreme cases:

If v is the first element in S (i.e., the integer in the memory cell of
address 1), the algorithm has running time 5.

If we are given a “no”-input, then the algorithm has running time
4n + 3.

The art of computer science is to design algorithms with perfor-
mance guarantees. In our scenario, what is the largest running
time on the worst input with size n?

Yufei Tao Binary Search and Worst-Case Analysis



8/18

Worst-Case Running Time

The worst-case cost (or worst-case time) of an algorithm under
a problem size n is the largest running time of the algorithm on
all the (possibly an infinite number of) size-n inputs.

Formally, let Sn be the (possibly infinite) set of all size-n inputs. Fix an
algorithm A. For each input I ∈ Sn, define costA(I ) as the cost of A on
I . Then, the worst-case cost of A is a function of n:

f A(n) = max
I∈Sn

costA(I ).

Yufei Tao Binary Search and Worst-Case Analysis



9/18

Example

Our algorithm has worst-case time f1(n) = 4n + 3.

In other words, no matter how you design the input set S of n integers,

the algorithm always terminates with a cost at most 4n + 3.

Yufei Tao Binary Search and Worst-Case Analysis



10/18

Binary Search

Next, we will see how to solve the problem with a much better worst-case
time, utilizing the fact that S has been stored in ascending order.

Let us compare q to the element x in the middle (the (n/2)-th) of S .

If q = x , we have found q.

If q < x , we can immediately forget about the second half of S .

If q > x , forget about the first half.

In the 2nd and 3rd cases, we have at most n/2 elements left.
Then, repeat the trick on those elements!

Yufei Tao Binary Search and Worst-Case Analysis



11/18

Binary Search

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 35

Conceptually discard the second half of S .

Yufei Tao Binary Search and Worst-Case Analysis



12/18

Binary Search

...

5 9 12 17 26 28 35

16 35

Conceptually discard the first half of what is shown.

Yufei Tao Binary Search and Worst-Case Analysis



13/18

Binary Search

...

26 28 35

16 35

Conceptually discard the first half of what is shown.

Yufei Tao Binary Search and Worst-Case Analysis



14/18

Binary Search

...

35

16 35

Found.

Yufei Tao Binary Search and Worst-Case Analysis



15/18

Binary Search in Pseudocode

1. let n be register 1 and q be register 2
2. register left ← 1, right ← n
3. repeat
4. register mid ← (left + right)/2
5. read the memory cell at address mid into register x
6. if x = q then return “yes”
7. else if x > q then right = mid − 1
8. else left = mid + 1
9. until left > right
10. return “no”

Yufei Tao Binary Search and Worst-Case Analysis



16/18

Worst-Case Time of Binary Search

Let us use the term active elements to refer to the integers stored at
memory addresses from left to right.

Refer to Lines 3-10 as an iteration. How many iterations are there?
After the first iteration, the number of active elements is at most n/2.
After another, the number is at most n/4. In general, after i iterations,
the number drops to at most n/2i .

Suppose that there are h iterations in total. It holds that h is the
smallest integer satisfying (think: why?)

n

2h
< 1

which gives h = ⌈log2(n + 1)⌉.

Yufei Tao Binary Search and Worst-Case Analysis



17/18

Worst-Case Time of Binary Search (cont.)

In each iteration, we perform only a constant number of operations, for
which 10 is a (loose) upper bound.

The worst-case time of binary search is at most f2(n) = 10(1 + log2 n).

When n is large, this running time is much lower than the time
4n + 3 of our first algorithm.

Yufei Tao Binary Search and Worst-Case Analysis



18/18

We have got a taste of what computer science is like. We are
seldom satisfied with just finding an algorithm to correctly solve a
problem. Instead, our goal is to design an algorithm with a strong
performance guarantee, i.e., you must prove that it runs fast even
in the worst case.

Yufei Tao Binary Search and Worst-Case Analysis


