
CSCI2100: Final Exam Solutions

Problem 1 (15%). F, T, F, T, F, T, F, T, F, T.

Problem 2 (5%).

1

2

7

3

4

5

6 8

Vertices’ time intervals:
Vertex 1: [1, 16]
Vertex 2: [2, 15]
Vertex 7: [3, 14]
Vertex 3: [4, 13]
Vertex 4: [5, 12]
Vertex 5: [6, 11]
Vertex 6: [7, 8]
Vertex 8: [9, 10]

Problem 3 (15%).
After inserting 1:

30

4015

35

36

73

60

38

3210

3

1

20

After deleting 60:

30

15

3

2010 35

32

40

73

36

38

After deleting 15:

40

35

20

10

3

30

32 73

60

36

38

Problem 4 (8%). Initalize an empty min-heap H. When an element e needs to be added to
S, check first whether H has at most k− 1 elements. If so, insert e into H. Otherwise, let xmin

be the key at the root of H. If xmin > e, ignore e. Otherwise, perform a del-min on H and
then insert e into H.

Problem 5 (7%). Create a hash table on S1 in O(n) time. Then, for each element e ∈ S1,
probe the hash table to check whether e ∈ S1; if so, report e.

Problem 6 (10%). We will first prove that a DAG G has a source vertex if and only if it has
exactly one vertex with in-degree 0. Let us start with the “only if” direction (⇒). Suppose
that s is a source vertex of G, but G has two distinct vertices u, v with in-degree 0. W.o.l.g.,
suppose that s ̸= u. Then, s cannot have a path to u becauuse every such path must use at
least one in-coming edge of u.

Next, we prove the “if” direction (⇐). Let s be the only vertex with an in-degree 0. For
any other vertex u in G, we argue that s must have a path to u. Suppose that this is not true.
Define u0 = u. Inducitively, suppose that we have found a vertex ui (i ≥ 0) such that s has no
path to ui. Let v be any in-neighbor of ui; note that v definitely exists because the in-degree
of ui is at least 1 (note that s ̸= ui because s has a path to itself). As s has no path to ui, it
cannot have a path to v, either. Define ui+1 = v. As G is a DAG, repeating the above process
will give distinct vertices u0, u1, u2, This gives a contradiction because G has only a finite
number of vertices.

For an algorithm, first run DFS to decide whether G is acyclic. If so, check whether G has
exactly one vertex with in-degree 0. These steps can be done in O(|V |+ |E|) time.

Problem 7 (10%). Maintain a BST T on S but at all times remember the smallest integer
of S, denoted as xmin . We can find xmin by descending into the leftmost leaf of T in O(log n)
time. Support the four operations as follows:

• Insert(e): insert e into T as in a normal BST. After the insertion, update xmin . The
total cost is O(log n).

• Delete(e): delete e from T as in a normal BST. After the deletion, update xmin . The
total cost is O(log n).

• Delmin: first delete xmin from T and then update xmin in the resulting tree. The total
cost is O(log n).

• Findmin: simply return xmin .

Problem 8 (20%).

• There are 2|E| choices to set u1, u2 such that {u1, u2} ∈ E. Similarly, there are 2|E|
choices to set u3, u4 such that {u3, u4} ∈ E. Once u1, u2, u3, u4 are chosen, whether
{u1, u2}, {u2, u3}, {u3, u4}, {u4, u1} make a 4-cycle is determined. Therefore, the number
of 4-cycles in G cannot exceed 4|E|2.

2

• First, build a structure that, given any two vertices u, v ∈ V , can determine in constant
expected time if {u, v} is an edge in G. For this purpose, for each vertex u ∈ V , build
a hash table on its adjacency list so that, give any vertex v ∈ V , we can check in O(1)
expected time whether v appears in the adjacency list. Constructing the hash tables for
all u ∈ V takes O(|V |+ |E|) time.

To find all 4-cycles, apply the following algorithm.

for each edge {a, b} ∈ E do
for each edge {c, d} ∈ E do

if {b, c} ∈ E and {d, a} ∈ E then
report cycle {a, b}, {b, c}, {c, d}, {d, a}

if {a, c} ∈ E and {d, b} ∈ E then
report cycle {b, a}, {a, c}, {c, d}, {d, b}

if {b, d} ∈ E and {c, a} ∈ E then
report cycle {a, b}, {b, d}, {d, c}, {c, a}

if {a, d} ∈ E and {c, b} ∈ E then
report cycle {b, a}, {a, d}, {d, c}, {c, b}

Because each if-statement takes O(1) time, the algorithm runs in O(|E|2) time overall.

• If G is a clique, it has Θ(|E|2) 4-cycles. Simply outputting all the cycles incurs Ω(|E|2)
time.

Problem 9 (10%). Initialize a heap H with the top-left number of M as the only element.
In general, if a number of M is inserted in H, mark it in M . Repeat the following k times.
Perform a delete-min from H. Let x be the number returned. Output x, and insert in H the
numbers on its right and below it respectively, provided that (i) they exist, and (ii) they are
unmarked. As H can contain only O(k) vertices, the total running time is O(k log k).

3

