
CSCI2100: Regular Exercise Set 7

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S1 and S2 be two sets of integers (they are not necessarily disjoint). We know that
|S1| = |S2| = n (i.e., each set has n integers). Design an algorithm to report the distinct integers in
S1 ∪ S2 using O(n) expected time. For example, if S1 = {1, 5, 6, 9, 10} and S2 = {5, 7, 10, 13, 15},
you should output: 1, 5, 6, 7, 9, 10, 13, 15.

Solution. First, output everything in S1. Then, create a hash table on S1 in O(|S1|) time. For
every value x ∈ S2, probe the hash table to see if x ∈ S1. If not, output x. Each probe takes
O(1) expected time. Hence, the total cost of all the probes is O(|S2|) expected. The overall cost is
therefore O(n) expected.

Problem 2 (No Single Hash Function Works for All Sets). Let U and m be integers
satisfying U ≥ m2. Fix a hash function h from [U ] to [m], where [x] represents the set of integers
{1, 2, ..., x}. Prove that there must be a set S ⊆ [U ] such that (i) |S| = m, and (ii) h maps all the
elements of S to the same hash value.

Solution. For each i ∈ [m], define Si = {x ∈ [U ] | h(x) = i}. Since
∑m

i=1 |Si| = U ≥ m2, there is
at least one j ∈ [m] such that |Sj | ≥ U/m ≥ m. Construct a set S to include m arbitrary distinct
elements from Sj . This S fulfills our purposes.

Problem 3*. Let S be a multi-set of n integers. Define the frequency of an integer x as the
number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct
integers in S by frequency. Your algorithm must terminate in O(n) expected time. For example,
suppose that S = {75, 123, 65, 75, 9, 9, 65, 9, 93}. Then you should output (123, 93, 65, 75, 9). Note
that if two integers have the same frequency, their relative ordering is unimportant. For example,
(93, 123, 75, 65, 9) is another legal output.

Solution. We can collect the set T of distinct integers in S by hashing as follows. For every
integer x ∈ S, check whether the hash table has already contained a copy of x. This takes O(1) in
expectation. If so, ignore x; otherwise, insert x into the hash table in O(1) time. The collection
requires O(n) time overall.

We can then obtain the frequency of every distinct integer as follows. For each integer x ∈ S,
find its copy in the hash table, and increase the counter of the copy by 1 (the counter initially set
to 0). This takes O(1) time per integer, and hence, O(n) time overall.

Now we simply sort all the distinct integers by frequency. Note that the frequencies are in the
domain from 1 to n. Hence, counting sort gets this done in O(n) time.

Problem 4*. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the
value. Preprocess S into a data structure so that the following queries can be answered efficiently.
Given a pair (qk, qv), a query

• Returns nothing if S contains no pair with key qk;
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• Otherwise, it returns the number of pairs (k, v) ∈ S such that k = qk and v ≤ qv.

Define the frequency of a key k as the number of pairs in S with key k. Define f as the maximum
frequency of all keys. Your structure must use O(n) space, and answer a query in O(log f) expected
time. Furthermore, it must be possible to construct the structure O(n log f) time.

For example, suppose that S = {(75, 35), (123, 6), (65, 32), (75, 22), (9, 1), (9, 10), (65, 74), (9, 8),
(93, 23)}. Then, given (63, 33), the query returns nothing. Given (65, 33), the query returns 1.
Given (65, 2), the query returns 0. In this example, f = 3.

Solution. Collect the set T of distinct keys in S, and obtain their frequencies in O(n) time (see
the solution of Problem 2). Create a hash table on T in O(n) time. For every key k ∈ T , create an
array Ak whose length is equal to the frequency of k. Store in Ak all the values v such that (k, v)
is a pair in S. Sort Ak in ascending order. The sorting takes O(|Ak| log |Ak|) = O(|Ak| log f) time.
Store the beginning address of Ak at the copy of k in the hash table. The overall construction time
is O(

∑
k |Ak| log f) = O(n log f). The space consumption is obviously O(n).

To answer a query (qk, qv), first probe the hash table to see if qk ∈ T . If not, terminate the
algorithm. Otherwise, perform binary search in Aqk in O(log f) time. The overall query time is
O(1) expected plus O(log f) worst case, which is O(log f) expected.

Problem 5** (Dynamic Hashing). Consider the following dynamic dictionary search problem.
Let S be a dynamic set of integers. At the beginning, S is empty. We want to support the following
operations:

• Insert(e): Adds an integer e to S.

• Delete(e): Removes an integer e from S.

• Query(q): Determines whether q belongs to the current set.

Design a data structure with the following guarantees:

• At all times, the space consumption is O(|S|), i.e., linear to the number of elements currently
in S.

• For any sequence of n operations (each being an insert, delete, or query), your algorithm
must use O(n) expected time in total.

Solution. If |S| ≤ 4, we simply store the entire |S| in an array of length 4. If |S| > 4, we will
maintain the hash function h whose output domain is [m], with m being a power of 2 and satisfying
|S| ≤ m ≤ 4|S|. Accordingly, we also maintain a hash table T computed using h. Insert(e) is
processed by inserting e into the linked list in T corresponding to the hash value h(e). Similarly,
delete(e) is processed by scanning the entire linked list of h(e), and removing e from there.

If after an insertion |S| reaches m, we double m, and reconstruct the hash table by randomly
selecting a new hash function h whose output domain is [m] (note that the domain size has doubled).
If after a deletion |S| equals m/4, we halve m, and reconstruct the hash table by randomly selecting
a new hash function h whose output domain is [m]. The amortized insertion/deletion cost is O(1)
by the same analysis we did for dynamic arrays.

A query is answered in the same way as discussed in the class.
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An insertion obviously is handled in O(1) time. The expected running time of a deletion is the
same as that of a query, which is O(1) when we choose h from universal family explained in the
class. The space consumption is O(|S|) at all times.
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