CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove logy(n!) = ©(nlogn).

Solution. Let us prove first logy(n!) = O(nlogn):

logy(n!) = logy (I} 4i)
logy n™

IN

nlogyn

O(nlogn).

Now we prove logy(n!) = Q(nlogn):

logy(n!) = logy(ILi ;i)
10g2(H?:n/2i)
log, (n/2)"”
(n/2)logy(n/2)
Q(nlogn).

v

v

This completes the proof.

Problem 2. Let f(n) be a function of positive integer n. We know:
fay =1
fn) < 2+ f([n/10]).

Prove f(n) = O(logn). Recall that [x] is the ceiling operator that returns the smallest integer at
least x.

Solution 1 (Expansion). Consider first n being a power of 10.

fn) < 2+ f(n/10)
< 242+ f(n/10%)
<

2+2+2+ f(n/10%)

IN i

2- loglo n—+ f(l)
= 2-log;on+1=0(logn).

Now consider n that is not a power of 10. Let n’ be the smallest power of 10 that is greater
than n. We have:

f(n) f(n')
2 loglo n/ + 1
2log(10n) + 1

O(logn).

VAN VAN VAN VAN

Solution 2 (Master Theorem). Let «, 3, v, and A be as defined in the Master Theorem. Thus,
we have a = 1,8 =10, v = 0, and A = 0. Since logg a = log;; 1 = 0 =, by the Master Theorem,

we know that f(n) = O(n"log*™!n) = O(logn).
Solution 3 (Substitution). We aim to find constants «, 8 such that f(n) < alogyn for all n > g.

Base case: n = 3. We need

f(B) <alogy 8 & o> f(B)/log, B (1)

Inductive case. Assuming f(n) < alogyn for all n <t — 1 where t > 3+ 1, we want to prove
F(t) < alogyt.
We will consider only

=2 (2)

such that ¢ > 3 and, hence, [¢/10] < (¢/10) + 1 < t/2. With this, we have:

f(t) 2+ f([t/107)

2 + alog,[t/10]
2 + alogy(t/2)
2+ alogyt — a.

ININ A

To complete the inductive argument, we need the above to be at most «log, ¢, namely:
a> 2. (3)

To satisfy (1)-(3), we set § =2 and o = max{2, f(2)/log, 2}.
Problem 3. Let f(n) be a function of positive integer n. We know:

f =1

fn) < 2n+4f([n/4]).
Prove f(n) = O(nlogn).
Solution 1 (Expansion). Consider first n being a power of 4.

f(n) 2n+4f(n/4)

2n + 4(2n/4 + 4f(n/4%))

2n + 2n + 4% f(n/4?)

2-2n + 4% f(n/4?)

2-2n + 42 (2(n/4%) + 4f(n/43))
3-2n 4 43f(n/4%)

ININ TN

IN

(logym)-2n+n- f(1)
= (logyn)-2n+n=0O(nlogn).

Now consider that n is not a power of 4. Let n’ be the smallest power of 4 that is greater than
n. This implies that n’ < 4n. We have:

f(n) f(n)
(log,n') - 2n' +n'
(log,(4n)) - 8n + 4n = O(nlogn).

VANRVARR VAN

Solution 2 (Master Theorem). Let «, 3, v, and A be as defined in the Master Theorem. Thus,
we have o = 4,8 =4,y =1, and A = 0. Since logg o = log, 4 = 1 = v, by the Master Theorem, we
know that f(n) = O(nYlog*! n) = O(nlogn).

Solution 3 (Substitution). We aim to find constants «, 8 such that f(n) < anlogyn for all
n > .

Base case: n = 3. We need:

f(B) <a-BlogyB < a= f(B)/(Blogy). (4)

Inductive case. Assuming f(n) < anlogyn for all n <t — 1 where t > 5+ 1, we want to prove
f(t) < atlogyt.

We will consider only

g = 4 (5)

such that ¢t > 5 and, hence, t/4 4+ 1 < t/2. With this, we have:

f(t) 2t + 4aft/4] logy[t/4]

2t +4a(t/4 4 1) logy(t/4+ 1)
2t + 4a(t/4 4 1) logy(t/2)

2t + (at + 4a)(logy t — 1)

2t + (at + 4a) logy t — at — 4o

2t + atlogy t + 4alogy t — at — 4o

IIAIAIA

IN A

To complete the inductive argument, we need the above to be at most atlog, ¢, namely:
2t +4alogyt < ot +4a (6)
We will make sure

B> 2% (7)

Under the above condition, for any ¢ > 3, it holds that logy ¢ < ¢/8. To ensure (6), it suffices to
have:

2t +4a(t/8) < oat+4a
S 2t+at/2 < at+4o
<2t < at/244a

which always holds when
a>4. (8)
To satisfy (4), (5), (7), and (8), we set 8 = 2% and o = max{f(2%)/(2810og2%),5}.

Problem 4 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we
are given an array A of n integers, and need to re-arrange them in ascending order. Consider the
following bubble sort algorithm:

1. If n = 1, nothing to sort; return.

2. Otherwise, do the following in ascending order of ¢ € [1,n — 1]: if A[i] > A[i + 1], swap the
integers in A[i] and A[i + 1].

3. Recurse in the part of the array from A[1] to A[n — 1].

Prove that the algorithm terminates in O(n?) time.

As an example, support that A contains the sequence of integers (10,15,8,29,13). After Step 2
has been executed once, array A becomes (10,8, 15,13, 29).

Solution. Let f(n) be the worst-case running time of bubble sort when A has n elements. From
Step 1, we know:

From Steps 2-3, we know:
fn) < fn—1)+0(n).
Solving the recurrence (e.g., by the expansion method) gives f(n) = O(n?).

Problem 5* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for
sorting an array A of n elements (we will use the notation Ali..j] to represent the part of the array
from Ali] to A[j]):

e If n =1 then return immediately.

e Otherwise set k = [n/3].

e Recursively sort A[l..k] and A[k + 1..n], respectively.

e Merge A[l..k] and A[k + 1..n] into one sorted array.
Prove that this algorithm runs in O(nlogn) time.

Solution. Let f(n) be the worst case time of the algorithm on an array of size n. We have the
following recurrence:

~

—~
—

~—
I

0(1)
f(n) < f([n/3]) + f([2n/3]) +c-n

where ¢ > 0 is a constant.
We want to find «, 5 such that f(n) < a-nlogyn for all n > g.

Base case: n = . We need

f(B) <a-Blogy B & o= f(B)/(Blog,B). (9)

Inductive case. Assuming f(n) < a-nlogyn for all n <t —1 where t > 4+ 1 > 2, we want to
prove f(t) < «-tlogyt.

From the recurrence, we get:

f@) < F(e/31) + F([2t/3]) +c-t
< aft/3]logy[t/3] + af2t/3]logy[2t/3] + ¢t

For all ¢t > 2, we have [t/3]| <t/2 and [2t/3]| < t. Hence:

ft) < a(t/3+1)logy(t/2) + a(2t/3 + 1)logy t + ct
= a(t/34+1)((logyt) — 1)+ a(2t/3 + 1)logy t + ct
= atlogyt —t(a/3 —c) —a+ 2alogyt

To complete the inductive argument, we want:

atlogyt —t(a/3 —c¢) —a+2alogyt < atlogyt
< at/3—2logyt+1) > ct (10)
We consider
B > 128 (11)

under which ¢ > g+ 1 > 129 and, hence, t/6 > 2log, t. Equipped with this, we get from (10):

ct
t/3 —2logyt +1
ct
t/3 —2logyt
ct
t/3—1t/6
= 6c. (12)

a >

i)
Q
\Y

T
Q
\Y

To satisfy (11), (9), and (12), we can choose 3 = 128 and o = max{f(128)/(128log, 128), 6¢}.

