
CSCI2100: Regular Exercise Set 11

Prepared by Yufei Tao

Problem 1 (DFS on Undirected Graphs). Let G = (V,E) be an undirected graph. Consider
the execution of DFS on G. The algorithm runs in exactly the same way as DFS on a directed
graph. The only difference is that, a vertex u is popped out of the stack, only if none of its neighbors
(instead of out-neighbors) is still white. Give a possible DFS tree produced if we (i) start DFS on
a in the following graph, and (ii) follow the convention that we explore the neighbors of a vertex
in alphabetic order.

a

b

c

d

e

f

g

Solution.

a

c

d

b ge

f

Problem 2 (No Cross Edges in Undirected DFS). Let G = (V,E) be an undirected graph.
Consider the DFS forest produced by running DFS on G (assuming arbitrary starting and re-
starting vertices). Let {u, v} be an edge in G (note that we use the notation {u, v}, instead of
(u, v), to emphasize that the edge has no directions). Prove: either u is an ancestor of v, or v is an
ancestor of u.

Remark: Because of this lemma, we can classify each edge {u, v} in G as follows:

• Tree edge: if u is the parent of v or v is the parent of u.

• Back edge: otherwise.

Solution. The white path theorem—as stated in Problem 1—still holds for undirected DFS (the
same proof applies here as well). Between u and v, let u be the vertex discovered first. Then, the
white path theorem says that v must be a descendant of u.

Problem 3 (Undirected Cycle Detection). Let G = (V,E) be an undirected graph. A cycle is
a sequence of edges {v1, v2}, {v2, v3}, ..., {vt−1, vt} where vt = v1. Adapt DFS to design an algorithm
to detect whether G has a cycle in O(|V |+ |E|) time.

1

Solution. Perform DFS on G. Declare cycle presence if and only if a back edge is found. For
example, in the Solution of Problem 2, there is such an edge {a, d}, which implies a cycle.

Problem 4** (Articulation Vertex). Let G = (V,E) be an undirected graph that is connected
(i.e., there is a path between any two distinct vertices). A vertex u ∈ V is called an articulation
vertex if the following is true: G becomes disconnected after removing u and all the edges of u.
For example, in the figure below, vertex g is an articulation, and so is d. No other vertices are
articulation vertices.

a

b

c

d

e

f

g

Consider any DFS tree on G. Prove:

• If a vertex u is a leaf in the DFS tree, it cannot be an articulation vertex.

• Let u a vertex that is neither a leaf in the DFS tree nor the root. It is an articulation vertex
if and only if the following is true:

– There is at least one child v of u, such that no back edge connects a descendant of v to
a proper ancestor of u.

• Let u be the root of a DFS tree. It is an articulation vertex if and only if it has at least two
child nodes in the DFS tree.

Solution.
Proof of the First Bullet.
Suppose that u is an articulation vertex. Let s be the starting vertex of the DFS. Then there must
be a vertex u′ such that all the paths from s to u′ must go by way of u. This implies that, when v
is discovered by DFS, there must be a white path from u to u′. The white path theorem then says
that u′ must be a descendant of u, contradicting the fact that u is a leaf.

Proof of the Second Bullet.
Only-if direction. Imagine removing u from G, which should disconnect G. Let C1, C2, ..., Ct for
some t ≥ 2 be the connected components (CCs) of the resulting graph (recall that a CC is a set of
vertices that are reachable from each other). Without loss of generality, assume that s belongs to
C1. Consider the moment right before the first vertex v in C2 is discovered. It must be a child of
u in the DFS tree (because any path from s to u must cross the edge {u, v}). At this moment, all
the vertices in C2 must be white; and they are the only vertices that v can reach via white paths.
Hence, all the vertices of C2 must be the only descendants of v. It thus follows that there can be
no back edge connecting a descendant of v to a proper ancestor of u.

If direction. We will prove that, after u is removed from G, s can no longer reach v, which thus
indicates that u is an articulation vertex. Suppose, on the contrary, that u can still access v by a
path π (that does not contain u). Denote the vertices on π as v1, v2, ..., vx with v1 = s and vx = v.

2

Let vi (for some i ∈ [1, x]) be the last vertex on π that is an ancestor of u. We will prove that
vi+1 must be a descendant of v, making {vi, vi+1} a back edge that connects a descendant of v to
a proper ancestor of u, which contradicts the fact that no such back edges exist.

Consider the moment right before the discovery of v. We argue that the colors of vi+1, vi+2, ..., vx−1

must all be white at this moment:

• First, none of them can be gray—otherwise, such a vertex must be an ancestor of u (because
u is the parent of v), contradicting the definition of vi.

• If vi+1 is black, it means that vi+1 was discovered before v. Furthermore, when vi+1 turned
black, vi+2 cannot be white (in non-directed DFS, a vertex can turn black only if it has no
white neighbors). Thus, at the moment when v is discovered, vi+2 must be black (as men-
tioned, vi+2 cannot be gray). Following the same argument, we obtain that vi+3, vi+4, ..., vx
must all be black at the moment. However, this contradicts the fact that vx = v is white.

• The same argument proves that none of vi+2, vi+3, ..., vx−1 can be black.

Therefore, all of vi+1, vi+2, ..., vx−1 must be descendants of v.

Proof of the Third Bullet.
Only-if direction. Vertex u is the starting vertex of DFS. Imagine removing u from G, which should
disconnect G into CCs C1, C2, ..., Ct for some t ≥ 2. Let v be the second vertex discovered by DFS
(i.e., right after u). Without loss of generality, suppose that v ∈ C1. Then, when v is discovered,
there is no white path from v to any vertex in C2. Hence, none of the vertices in C2 can be
descendants of v, implying that u must have another child.

If direction. Let v be the second vertex discovered by DFS (i.e., right after u). Let v′ any other
child of u in the DFS tree. We will prove that any path from v to v′ must go through u, which
indicates that u is an articulation vertex.

Assume that there is a path π from v to v′ that does not go through u. Then, when v is
discovered, there is a white path from v to v′, which means that v′ must be a descendant of v in
the DFS tree. This contradicts the fact that v′ and v are siblings.

Problem 5* (Finding an Articulation Vertex). Let G = (V,E) be an undirected graph that
is connected. Design an algorithm to determine whether G has any articulation vertex. Your
algorithm must finish in O(|V |+ |E|) time.

Solution. First grow a DFS-tree T , but make sure that at each node u we record its level (the
root is at level 0), denoted as level(u). We now process the vertices of T in a bottom-up manner
(i.e., descending order of level). Let u be a vertex to be processed next. We do the following:

• Case 1: u is a leaf node: We inspect all the edges {u, v} of u, and obtain:

highest-back-level(u) = min
all {u, v}

level(v).

• Case 2: u is an internal node but not the root: Let v1, v2, ..., vt be its children (which have
already been processed). If

t
max
i=1

highest-back-level(vi) ≥ level(u)

3

we report u as an articulation vertex, and finish.

Otherwise, inspect all the edges {u, v} of u, and obtain:

highest-back-level(u) = min
all {u, v}

level(v).

Then, update highest-back-level(u) to be:

min

{
highest-back-level(u),

t
min
i=1

highest-back-level(vi)

}
.

• Case 3: u is the root: Report u as an articulation vertex if it has at least 2 child nodes.

4

