CSCI 2100 Tutorial 9

WU Hao
Outline

• A review on the binary heap

• Regular exercise 8 problem 4

• Special exercise 8 problem 4
Binary Heap (Review)

Let S be a set of n integers. A binary heap on S is a binary tree T satisfying:

1. T is a complete binary tree.
2. Every node u in T stores a distinct integer in S, called the key of u.
3. If u is an internal node, the key of u is smaller than those of its child nodes.

The third property may be violated after insertion and delete-min.
Heap Property Violation

Original:

```
3
/   \
15   20
|    /
37  27  53  25
   |    \
  91   
```

After insertion:

```
3
/   \
15   20
|    /
37  27  53  25
   |    
  91   12
```

After delete-min:

```
91
/   \
15   20
|    /
37  27  53  25
   |    
```

Original:

```
3
/   \
15   20
|    /
37  27  53  25
   |    
  91   
```

After insertion:

```
3
/   \
15   20
|    /
37  27  53  25
   |    
  91   12
```

After delete-min:

```
91
/   \
15   20
|    /
37  27  53  25
   |    
```
Restoring the Heap Property
After Insertion

Swap up:
If node u has a smaller key than its parent p, swap the keys of u and p. Set u to p, and repeat until there is no violation.
Swap Up

Swap up at most $O(\log n)$ times to restore the heap property.
Restoring the Heap Property
After Delete-min

Swap down:
Let \(v \) be the child of node \(u \) with a smaller key. If the key of \(u \) is larger than the key of \(v \), swap the keys of \(u \) and \(v \). Set \(u \) to \(v \), and repeat until there is no violation.
Swap Down

Swap down at most $O(\log n)$ times to restore the heap property.
Problem:

Suppose that we have k sorted arrays (in ascending order) A_1, A_2, \ldots, A_k of integers. Let n be the total number of integers in those arrays.

Describe an algorithm to produce an array that sorts all the n integers in ascending order in $O(n \log k)$ time.
Solution 1: Merge Operation

• Input
 \(k = 8, \ n = 20 \)

\[
\begin{array}{cccc}
2 & 12 & 17 & 8 & 11 \\
1 & 25 & 23 & 28 & 6 & 9 & 10 & 3 & 18 & 19 \\
\end{array}
\]

Merge

\[
\begin{array}{cccc}
2 & 8 & 11 & 12 & 17 & 3 & 6 & 9 & 10 & 18 & 19 \\
1 & 23 & 25 & 28 & 5 & 7 & 15 & 30 & 40 \\
\end{array}
\]

Merge

\[
\begin{array}{cccc}
2 & 3 & 6 & 8 & 9 & 10 & 11 & 12 & 17 & 18 & 19 \\
1 & 5 & 7 & 15 & 23 & 25 & 28 & 30 & 40 \\
\end{array}
\]

8 arrays

4 arrays

2 arrays
Solution 1: Merge Operation

Need $O(\log k)$ passes. Each pass takes $O(n)$ time on n integers (the cost of merging is proportional to the number of elements involved).

Therefore, the total time complexity is $O(n \log k)$.
Solution 2: Binary Heap

• Input:
 k = 3, n = 15

[2 15 30 40 47] [5 8 11 12]
[9 14 21 26 27 37]

• Output

[2 5 8 9 11 12 14 15 21 26 27 30 37 40 47]
Solution 2: Binary Heap

Ideas:

• A binary heap of size k can perform delete-min and insertion in $O(\log k)$ time.

• Perform a delete-min to obtain the smallest integer that has not been output.

• After delete-min, insert a new integer into the heap from the integer’s origin array.
Solution 2: Binary Heap

```
2  15  30  40  47
9  14  21  26  27  37
```

```
2  15  30  40  47
9  14  21  26  27  37
```

```
2  15  30  40  47
9  14  21  26  27  37
```
Solution: Binary Heap

Initialization cost:
 creating the output array: $O(n)$

Processing cost:
 n insertions: $O(n \log k)$
 delete-min: $O(n \log k)$

Total time complexity:
$O(n \log k)$
Special Exercise 8 Problem 4

Problem:
Let S be a dynamic set of integers. At the beginning, S is empty. Then, new integers are added to it one by one, but never deleted. Let k be a fixed integer. Describe an algorithm which achieves the following guarantees:

- Space consumption $O(k)$.
- Insert(e): Insert a new element e into S in $O(\log k)$ time.
- Report-top-k: Report the k largest integers in S in $O(k)$ time.
Example:

Suppose that \(k = 3 \), and the sequence of integers inserted is 83, 21, 66, 5, 24, 76, 92, 33, 43,…

The 3 largest integers are 83, 66, 24 after the insertion of 24, they become 83, 66, 76 after the insertion of 76, and so on.
Solution

Intuition:

• A heap H of size k takes $O(k)$ space.
• H performs insertion and delete-min in $O(\log k)$ time.
• The root r of H stores the minimal integer in H.
• Make sure that H always contains the k largest integers. If the incoming integer m is larger than the minimal integer stored in H, we perform delete-min and insert(m). Otherwise, we do nothing.
Solution

• Input:
83, 21, 66, 5, 24, 76, 92, 33, 43, ..., and k=3
Solution

Maintain a binary heap H with k integers.

1. Insert first k integers into H. Each insertion takes $O(\log k)$ time.

2. For a newly added integer e from the sequence, compare it with the integer e_r stored at the root r of H:

 (1) If $e > e_r$, perform delete-min and insert(e), which take $O(\log k)$ time in total.

 (2) Otherwise, ignore e.
Solution

Report-top-k: Report all integers in H by traversing the heap.
A challenging problem for you

• For this problem, we can actually achieve
 • $O(k)$ space
 • $O(1)$ amortized insertion time
 • $O(k)$ top-k report time.

• Hint: k-selection.