Recursion (the Beginning)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
This lecture will introduce a technique called recursion for designing algorithms. Its principle is:

When dealing with a subproblem (same problem but with a smaller input), consider it solved.

We will apply the technique to settle several problems in this course. Today, we will see two examples. In the first, we will re-discover binary search; in the second, we will design our first sorting algorithm.
An array of length n is a sequence of n elements such that
- they are stored consecutively in memory (i.e., the first element is immediately followed by the second, and then by the third, and so on);
- every element occupies the same number of memory cells.
With the concept of array, we now redefine the dictionary search problem:

The Dictionary Search Problem (Redefined)

Problem Input:

A set S of n integers has been arranged in **ascending** order in an array of length n. You are given the value of n and another integer v inside the CPU.

Goal:

Design an algorithm to determine whether v exists in S.

Yufei Tao

Recursion (the Beginning)
Binary Search (Re-discovered)

1. Compare \(v \) to the middle element \(e \) of the array. If \(v = e \), return “yes” and done.

2. Otherwise:
 2.1 If \(v < e \), we have a subproblem: check if \(v \) is in the portion of the array before \(e \);
 2.2 If \(v > e \), we have a subproblem: check if \(v \) is in the portion of the array after \(e \).

Considering the subproblem solved, we finish the algorithm.

Think: why does it work?
Recursion allows us to analyze the running time in an elegant manner.

Define $f(n)$ to be the maximum running time of binary search on n elements. For $n = 1$, clearly:

$$f(1) = O(1)$$

For $n > 1$:

$$f(n) \leq O(1) + f(\lfloor n/2 \rfloor).$$
Analysis of Binary Search

So it remains to solve the recurrence (\(c_1, c_2\) are constants whose values we do not care):

\[
\begin{align*}
 f(1) &= c_1 \\
 f(n) &\leq c_2 + f(\lfloor n/2 \rfloor)
\end{align*}
\]

Suppose, for now, that \(n\) is a power of 2. An easy way of doing so is the expansion method, which simply expands \(f(n)\) all the way down:

\[
\begin{align*}
 f(n) &\leq c_2 + f(n/2) \\
 &\leq c_2 + c_2 + f(n/2^2) \\
 &\leq c_2 + c_2 + c_2 + f(n/2^3) \\
 &\leq c_2 + \ldots + c_2 + f(1) \\
 &= c_2 \cdot \log_2 n + c_1 = O(\log n).
\end{align*}
\]
Analysis of Binary Search

We can deal with general n (not necessarily a power of 2) using a rounding approach. Let n' be the least power of 2 that is larger than n. It thus holds that $n' < 2n$ (otherwise, n' is not the least).

We then have:

$$f(n) \leq f(n') \leq c_2 \cdot \log_2 n' + c_1 \text{ (proved earlier)}$$

$$< c_2 \cdot \log_2 (2n) + c_1$$

$$= c_2(1 + \log_2 n) + c_1$$

$$= c_2 \log_2 n + c_1 + c_2 = O(\log n).$$
Next, we switch our attention to the sorting problem, which is a classical problem in computer science, and is worth several lectures’ discussion.
The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is inside the CPU (i.e., in a register).

Goal:

Produce an array that stores the elements of S in ascending order.
Example

Input:

```
5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88
16
```

Output:

```
5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88
16
```
Selection Sort

1. Find the largest integer e_{max} in S.
2. Swap e_{max} with the last (i.e., n-th) element of the array (after which e_{max} is at the end of the array).
3. We now have a subproblem: sort the first $n - 1$ elements.

Let us consider that the subproblem has been solved. Now, the entire array is in ascending order. We thus finish the algorithm.
Example

Input:

After Step 2:

sort these 15 elements recursively
Analysis of Selection Sort

Let $f(n)$ be the maximum running time of selection sort when the problem size is n. We know:

$$f(1) = O(1)$$

For $n \geq 2$, we have:

$$f(n) \leq O(n) + f(n - 1)$$

where the term $O(n)$ captures the cost of Steps 1 and 2, and $f(n - 1)$ is the cost of Step 3.
Analysis of Selection Sort

So it remains to solve the recurrence (c_1, c_2 are constants):

\[
\begin{align*}
 f(1) &= c_1 \\
 f(n) &\leq c_2 n + f(n-1)
\end{align*}
\]

Using the expansion method, we get:

\[
\begin{align*}
 f(n) &\leq c_2 n + f(n-1) \\
 &\leq c_2 n + c_2(n-1) + f(n-2) \\
 &\leq c_2 n + c_2(n-1) + c_2(n-2) + f(n-3) \\
 &\leq c_2 n + c_2(n-1) + \ldots + c_2 \cdot 2 + f(1) \\
 &\leq c_2 n(n+1)/2 + c_1 \\
 &= O(n^2).
\end{align*}
\]

We now conclude that selection sort runs in $O(n^2)$ worst-case time.