Linked Lists, Stacks, and Queues

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
A **data structure** stores a set of elements and supports certain operations on those elements.

The only data structure in our discussion so far is the **array**.

In this lecture, we will first discuss a new data structure, the **linked list**, and then utilize it to design two other structures: the **stack** and the **queue**.
A **linked list** is a sequence of **nodes** where:

- a node is an array;
- a node’s **address** is its array’s starting memory address;
- each node stores in its array
 - a **back-pointer** to its preceding node (if it exists);
 - a **next-pointer** to its succeeding node (if it exists).

Recall that a “pointer” is a memory address.

In a linked list, the first node is called the **head** and the last node is called the **tail**.
The figure below illustrates a linked list of three nodes u_1, u_2, and u_3, whose addresses are a, b, and c, respectively.

The back-pointer of node u_1 (the head) is \texttt{nil}, denoted by \texttt{⊥}. The next-pointer of u_3 (the tail) is also \texttt{nil}.
Example:

A linked list storing a set of integers \(\{14, 65, 78, 33, 82\}\):

<table>
<thead>
<tr>
<th>b</th>
<th>a</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>a</td>
<td>c</td>
<td>65</td>
<td>b</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>d</td>
<td>33</td>
<td>b</td>
<td>14</td>
</tr>
</tbody>
</table>

Conceptually, we can think of the sequence \((65, 78, 33, 82, 14)\) in the linked list as:

\[65 \leftrightarrow 78 \leftrightarrow 33 \leftrightarrow 82 \leftrightarrow 14 \]
Two (Simple) Facts

Suppose that we use a linked list to store a set S of n integers (one node per integer).

Fact 1: The linked list uses $O(n)$ space, namely, $O(n)$ memory cells.

Fact 2: Starting from the head node, we can enumerate all the integers in S in $O(n)$ time.
A linked list storing a set S supports **updates**:

- **insertion**: add a new element to S;
- **deletion**: remove an existing element from S.

Insertion in a Linked List

To insert a new element e, append e to the linked list:

1. Identify the tail node u.
2. Create a new node u_{new} to store e.
3. Set the next-pointer of u to the address of u_{new}.
4. Set the back-pointer of u_{new} to the address of u.

$O(1)$ time.
Example

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>d</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>65</td>
<td>82</td>
<td>14</td>
<td>33</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>33</td>
<td>⊥</td>
</tr>
</tbody>
</table>

65 ←→ 78 ←→ 33 ←→ 82 ←→ 14

After inserting 57:

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>b</th>
<th>a</th>
<th>d</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>e</td>
<td>78</td>
<td>65</td>
<td>82</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

65 ←→ 78 ←→ 33 ←→ 82 ←→ 14 ←→ 57
Deletion from a Linked List

Given a pointer to a node u in the linked list, we can delete the node as follows:

1. Identify the preceding node u_{prec} of u.
2. Identify the succeeding node u_{succ} of u.
3. Set the next-pointer of u_{prec} to the address of u_{succ}.
4. Set the back-pointer of u_{succ} to the address of u_{prec}.
5. Free up the memory of u.

$O(1)$ time
Example

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>d</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>57</td>
<td>⊥</td>
<td>78</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>⊥</td>
<td>b</td>
<td>82</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>d</td>
<td>f</td>
<td>33</td>
<td>b</td>
</tr>
</tbody>
</table>

65 ←→ 78 ←→ 33 ←→ 82 ←→ 14 ←→ 57

After deleting 78:

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>a</th>
<th>d</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>57</td>
<td>⊥</td>
<td>65</td>
<td>c</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>d</td>
<td>f</td>
<td>33</td>
<td>a</td>
</tr>
</tbody>
</table>

65 ←→ 33 ←→ 82 ←→ 14 ←→ 57
Next, we will deploy the linked list to implement two data structures: stack and queue.
A **stack** manages a set S of elements and supports two operations:

- **push**(e): insert a new element e into S.
- **pop**: remove the *most recently inserted* element from S and returns it.

First-In-Last-Out (FILO).
Example

Consider the following sequence of operations on an empty stack:

- Push(35): \(S = \{35\} \).
- Push(23): \(S = \{35, 23\} \).
- Push(79): \(S = \{35, 23, 79\} \).
- Pop: return 79 after removing it from \(S \). Now \(S = \{35, 23\} \).
- Pop: return 23 after removing it from \(S \). Now \(S = \{35\} \).
- Push(47): \(S = \{35, 47\} \).
- Pop: return 47 after removing it from \(S \). Now \(S = \{35\} \).
Linked-List implementation of a Stack

Store the elements of S in a linked list L.

Push(e): insert e at the end of L.
Pop: delete the tail node of L and return the element therein.

At all times, keep track of a pointer to the tail node.

Guarantees:

- $O(n)$ space where $n = |S|$ (assuming that each element in S occupies $O(1)$ memory).
- Push in $O(1)$ time.
- Pop in $O(1)$ time.
A **queue** stores a set S of elements and supports two operations:

- **en-queue**(e): inserts an element e into S.
- **de-queue**: removes the **least recently inserted** element from S and returns it.

First-In-First-Out (FIFO).
Example

Consider the following sequence of operations on an initially empty queue:

- En-queue(35): $S = \{35\}$.
- En-queue(23): $S = \{35, 23\}$.
- En-queue(47): $S = \{79, 47\}$.
- De-queue: return 79 after removing it from S. Now $S = \{47\}$.
Linked-List Implementation of a Queue

Store the elements of S in a linked list L.

$\text{En-queue}(e)$: insert e at the end of L.
De-queue: delete the head node of L and return the element therein.

At all times, keep track of the addresses of the head and the tail.

Guarantees:

- $O(n)$ space, where $n = |S|$ (assuming each element in S occupies $O(1)$ memory).
- En-queue in $O(1)$ time.
- De-queue in $O(1)$ time.