Dynamic Arrays and Amortized Analysis

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
To create an array, you need to specify a size, i.e., how many elements you can store in the array. Increasing the size is expensive because it means creating a new array and moving all the elements over.

This lecture will discuss clever tricks to change the array size efficiently! Our discussion introduces the method of **amortized analysis**.
Dynamic Array Problem

Let S be a collection of integers (not necessarily distinct). S is empty in the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an array A satisfying:

1. A has length $O(n)$.
2. For each $i \in [1, n]$, $A[i] = x$ if x is the i-th integer added to S.

The above requirements need to be satisfied after every insertion.
Naive Algorithm

Perform insert(e) (which inserts an integer e to S) as follows:

- If \(n = 0 \), set \(n \) to 1 and initialize \(A \) to have length 1 to store \(e \).
- Otherwise (\(n \geq 1 \)):
 - Increase \(n \) by 1.
 - Initialize an array \(A' \) of length \(n \).
 - Copy all the \(n - 1 \) elements of \(A \) to \(A' \).
 - Set \(A'[n] = e \).
 - Destroy \(A \) and replace it with \(A' \).

This algorithm spends \(O(n) \) time on the \(n \)-th insertion. Altogether, it takes \(O(n^2) \) time to do \(n \) insertions.
We will reduce the time of inserting \(n \) elements dramatically to \(O(n) \). Our array \(A \) may have a length up to \(2n \).
A Better Algorithm

A is **full** if its cells are all filled.

Perform insert(e) as follows:

- If $n = 0$, set n to 1 and initialize A of length 2 to store just e itself.
- Otherwise (i.e., $n \geq 1$), append e to A and increase n by 1. If A is full:
 - Initialize an array A' of length $2n$.
 - Copy all the elements of A to A'.
 - Destroy A and replace it with A'.
Example

\begin{itemize}
 \item $n = 1$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[]}
 \end{array} \]
 \end{itemize}
 \item $n = 2$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[] []}
 \end{array} \]
 \end{itemize}
 \item $n = 3$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[] [] []}
 \end{array} \]
 \end{itemize}
 \item $n = 4$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[] [] [] []}
 \end{array} \]
 \end{itemize}
 \item $n = 5$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[] [] [] [] []}
 \end{array} \]
 \end{itemize}
 \item $n = 8$
 \begin{itemize}
 \item \[\begin{array}{c}
 \text{[] [] [] [] [] [] []}
 \end{array} \]
 \end{itemize}
\end{itemize}
Analysis

Cost of inserting the n-th element:

- if A is not full after the insertion, $O(1)$;
- otherwise, $O(n)$, i.e., the time of expanding A.

Yufei Tao

Dynamic Arrays and Amortized Analysis
Analysis

Array expansions are infrequent:

- Initially, size 2.
- 1st expansion: size from 2 to 4.
- 2nd expansion: from 4 to 8.
- ...
- \(i\)-th expansion: from \(2^i\) to \(2^{i+1}\).

After \(n\) insertions, the size of \(A\) is at most \(2n\). Hence:

\[
2^{i+1} \leq 2n \quad \Rightarrow \quad i \leq \log_2 n
\]

that is, at most \(\log_2 n\) expansions.
The total cost of n insertions is bounded by:

$$\left(\sum_{i=1}^{n} O(1) \right) + \sum_{i=1}^{\log_2 n} O(2^i) \quad (1)$$

where

- the first term captures the $O(1)$ time compulsory for each insertion;
- the second term captures all the expansion cost.

(1) evaluates to $O(n)$.
We have shown that the total cost of n insertions is $O(n)$. In other words, each insertion entails $O(1)$ cost “on average”. This does not mean that every insertion can be performed in $O(1)$ time. The cost of some insertions can reach $\Omega(n)$.
In general, if a data structure can process any n operations in $f(n)$ time, we say that it guarantees an amortized cost of $\frac{f(n)}{n}$ per operation.

The dynamic array guarantees $O(1)$ amortized cost per insertion.