Counting Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
We already know that sorting n integers can be done in $O(n \log n)$ time. Today, we will see a variant of the sorting problem where the integers come from a small domain.
Problem Input:
A set S of n integers is given in an array of length n. Every integer is in the range of $[1, U]$. It holds that $U \geq n$.

Goal:
Produce an array that stores the integers of S in ascending order.
Counting Sort

Step 1: Let A be the array storing S. Create an array B of length U. Initialize B by setting all its cells to 0.

Step 2: Carry out the following for every $i \in [1, n]$: set $B[A[i]] = 1$.

Step 3: Generate the sorted order as follows:

```plaintext
for x = 1 to U
    if B[x] = 1 then append integer x to A.
```
Example

At the beginning

\[13 \ 2 \ 8 \ 4 \ 11 \ 12 \]

Initialize array \(B \) (assuming \(U = 16 \))

\[13 \ 2 \ 8 \ 4 \ 11 \ 12 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]

\[A \quad \rightarrow \quad B \]

Setting \(n \) cells of \(B \) to 1

\[13 \ 2 \ 8 \ 4 \ 11 \ 12 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \]

\[A \quad \rightarrow \quad B \]

Final sorted list

\[2 \ 4 \ 8 \ 11 \ 12 \ 13 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \]

\[A \quad \rightarrow \quad B \]
Analysis of Counting Sort

Steps 1 and 3 take $O(U)$ time. Step 2 takes $O(n)$ time.

Therefore, the overall running time of counting sort is $O(n + U) = O(U)$.

For small $U = O(n)$ (e.g., $1000n$), the counting sort runs in $O(n)$ time.
It is important to note that counting sort does not improve merge sort in general! $O(n + U)$ is incomparable to $O(n \log n)$. When $U = O(n)$, counting sort is faster, but when $U = \Omega(n^2)$, merge sort is faster.