Binary Search Tree (Part 1)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Today, we will introduce the binary search tree (BST). This lecture will focus on the **static** version of the BST (namely, without insertions and deletions), leaving the **dynamic** version to the next lecture.
Predecessor Search

Let \(S \) be a set of integers.

- A \textit{predecessor query}: give an integer \(q \), find its \textit{predecessor} in \(S \), which is the largest integer in \(S \) that does not exceed \(q \);

\textbf{Example}: Suppose that \(S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\} \).

- The predecessor of 23 is 20
- The predecessor of 15 is 15
- The predecessor of 2 does not exist.
A binary search tree (BST) stores a set S of integers to support:

- the predecessor query;
- **Insertion**: adds a new integer to S;
- **Deletion**: removes an integer from S.

We will guarantee:

- $O(n)$ space consumption.
- $O(\log n)$ time per predecessor query.
- $O(\log n)$ time per insertion
- $O(\log n)$ time per deletion

where $n = |S|$.
We define a BST on a set S of n integers as a binary tree T satisfying all the following requirements:

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the **key** of u.
- For every internal u:
 - its key is **larger than** all the keys in the left subtree;
 - its key is **smaller than** all the keys in the right subtree.
Example

Two possible BSTs on $S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\}$.
A binary tree T is balanced if the following holds on every internal node u of T:

- The height of the left subtree of u differs from that of the right subtree of u by at most 1.

If u violates the above requirement, we say that u is imbalanced.
Example

Balanced

Imbalanced (nodes 40 and 60 are imbalanced)
Theorem: A balanced binary tree with n nodes has height $O(\log n)$.

Proof: Denote the height as h. We will show that a balanced binary tree with height h must have $\Omega(2^{h/2})$ nodes.

This implies a constant $c > 0$ such that:

\[
\begin{align*}
n &\geq c \cdot 2^{h/2} \\
\Rightarrow 2^{h/2} &\leq n/c \\
\Rightarrow h/2 &\leq \log_2(n/c) \\
\Rightarrow h &= O(\log n).
\end{align*}
\]
Height of a Balanced Binary Tree

Let $f(h)$ be the minimum number of nodes in a balanced binary tree with height h. It is clear that:

$$f(1) = 1$$
$$f(2) = 2$$
Height of a Balanced Binary Tree

In general, for \(h \geq 3 \):

\[
f(h) = 1 + f(h - 1) + f(h - 2)
\]
Height of a Balanced Binary Tree

When h is an even number:

\[
\begin{align*}
 f(h) &= 1 + f(h - 1) + f(h - 2) \\
 &> 2 \cdot f(h - 2) \\
 &> 2^2 \cdot f(h - 4) \\
 &> 2^{h/2-1} \cdot f(2) \\
 &= 2^{h/2}
\end{align*}
\]
Height of a Balanced Binary Tree

When h an odd number (i.e., $h \geq 3$):

$$f(h) > f(h - 1) > 2^{(h-1)/2} = 2^{h/2}/\sqrt{2} = \Omega(2^{h/2})$$
Suppose that we have created a balanced BST \(T \) on a set \(S \) of \(n \) integers. A predecessor query with search value \(q \) can be answered by descending a single root-to-leaf path:

1. Set \(p \leftarrow -\infty \) (\(p \) will contain the final answer at the end)
2. Set \(u \leftarrow \) the root of \(T \)
3. If \(u = \text{nil} \), then return \(p \)
4. If key of \(u = q \), then set \(p \) to \(q \), and return \(p \)
5. If key of \(u > q \), then set \(u \) to the left child (now \(u = \text{nil} \) if there is no left child), and repeat from Line 3.
6. Otherwise, set \(p \) to the key of \(u \), set \(u \) to the right child, and repeat from Line 3.
Suppose that we want to find the predecessor of 35.

Start from $u = \text{root } 40$. Since $40 > 35$, the predecessor cannot be in the right subtree of 40. So we move to the left child of 40. Now $u = \text{node } 15$.
Since $15 < 35$, the predecessor cannot be in the left subtree of 15. Update p to 15, because this is the predecessor of 35 so far, if we do not consider the right subtree of 15. Now, move u to the right child, namely, node 30.

Yufei Tao

Binary Search Tree (Part 1)
Since 30 < 35, the predecessor cannot be in the left subtree of 30. Update p to 30. We need to move to the right child, but 30 does not have a right child. So the algorithm terminates here with $p = 30$ as the final answer.
Analysis of Predecessor Query Time

Obviously, we spend $O(1)$ time at each node visited. Since the BST is balanced, we know that its height is $O(\log n)$.

Therefore, the total query time is $O(\log n)$.
Successors

The opposite of predecessors are “successors”.

Formally, the successor of an integer q in S is the smallest integer in S that is no smaller than q.

Suppose that $S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\}$.

- The successor of 23 is 30
- The successor of 15 is 15
- The successor of 81 does not exist.
Finding a Successor

Given an integer q, a **successor query** returns the successor of q in S.

By symmetry, we know from the earlier discussion (on predecessor queries) that a predecessor query can be answered using a balanced BST in $O(\log n)$ time, where $n = |S|$.