Linear Time Sorting in a Polynomial Domain

[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Recall that counting sort is able to sort n integers in the range from 1 to U in $O(n + U)$ time. The running time is expensive for large U. We will significantly improve this by describing how to sort in $O(n)$ time for any $U \leq n^c$, where c is a constant (e.g., 10).

The new algorithm is called **radix sort**.
Without loss of generality, we will consider that \(n \) is a power of 2 (why no generality is lost?). Hence, every integer can be represented by \(c \log_2 n \) bits (in binary form), which we denote as \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_2 b_1 \), where \(b_1 \) is the least significant bit.

For every integer \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_2 b_1 \), we divide the bits into \(c \) disjoint chunks, each of which contains \(\log_2 n \) bits:

- The first chunk contains the right most \(\log_2 n \) bits, namely, \(b_{\log_2 n} b_{\log_2 n - 1} ... b_1 \).
- The second chunk contains the next \(\log_2 n \) bits, namely, \(b_{2 \log_2 n} b_{2 \log_2 n - 1} ... b_{\log_2 n + 1} \).
- ...
- The last chunk contains the left most \(\log_2 n \) bits, namely, \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_{(c - 1) \log_2 n + 1} \).
For any integer \(x = b_c \log_2 n b_{c-1} \ldots b_2 b_1 \), and any \(i \in [1, c] \), we can obtain the \(i \)-th chunk of \(x \) as follows:

- Calculate \(y = x \mod n^i \). The binary form of \(y \) corresponds to the rightmost \(i \cdot \log_2 n \) bits of \(x \). If \(i = 1 \), then return \(y \). Otherwise, proceed to the next step.

- Return \(y / n^{i-1} \) (integer division).

We can prepare \(n, n^2, n^3, \ldots, n^c \) in advance to ensure that \(y \) can be calculated in \(O(1) \) time. The values of \(n, n^2, n^3, \ldots, n^c \) can be calculated in \(O(c) = O(1) \) total time.
Suppose that $c = 4$, $n = 16$, and $x = 011011000010$ (i.e., 1730 in decimal). To get its 2nd chunk, we do:

- $y = x \mod n^2 = 1730 \mod 256 = 194$
- We return $y/n = 194/16 = 12$.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x.
Stable sorting: The input is a set \(S \) of \(n \) key-value pairs of the form \((k, v)\), where \(k \) is the key and \(v \) is the value. These pairs are given in an array \(A \). Every key is in the range from 1 to \(n \).

The goal is to produce an array \(B \) that stores all the pairs in non-descending key order. Furthermore, the sorting must be stable in the following sense. For any two pairs \((k_1, v_1)\) and \((k_2, v_2)\) such that \(k_1 = k_2 \), if \((k_1, v_1)\) is positioned earlier than \((k_2, v_2)\) in \(A \), this must also be true in \(B \).

We can adapt counting sort easily to solve the above problem in \(O(n) \) time (details left to you).
We now return to our problem. Let \(A \) be the input array of \(n \) integers. We sort them by executing the stable counting sort algorithm of the previous slide \(c \) times:

- Stable-sort \(A \) according to their 1st chunks. Replace \(A \) with the array output.
- Stable-sort \(A \) according to their 2nd chunks. Replace \(A \) with the array output.
- \(\ldots \)
- Stable-sort \(A \) according to their \(c \)-th chunks. Replace \(A \) with the array output.

Return the final \(A \).
Analysis

Correctness guaranteed by stability.

Running time clearly $c \cdot O(n) = O(n)$.