Comparison Lower Bound of Sorting
(Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
We already know that n elements can be sorted in $O(n \log n)$ time. This lecture will prove that the time complexity is optimal for comparison-based algorithms. In other words, every such algorithm must incur $\Omega(n \log n)$ time on at least one input.
There are $n!$ different ways to permute the n elements in the input array A.

Example

For $n = 3$, 6 permutations:

The goal of sorting is essentially to decide which of the $n!$ permutations is the final sorted order.
Comparison-Based Algorithm

Formally, such an algorithm works by continuously shrinking a pool P of possible permutations.

- At the beginning, P contains all the $n!$ permutations.
- Every comparison allows the algorithm to discard all those permutations in P that are inconsistent with the comparison’s result.
- Eventually, P has only 1 permutation left, which is thus the final sorted order.

In other words, at any moment, all the permutations that remain in P are possible results. The algorithm cannot terminate as long as $|P| \geq 2$.
In general, each comparison allows us to shrink P to either P_1 or P_2.

Yufei Tao

Comparison Lower Bound of Sorting (Slides for ESTR2102)
Comparison-Based Algorithm: The Framework

Framework

1. $P \leftarrow $ all the $n!$ permutations of A
2. while $|P| > 1$
3. make a comparison between elements e_1 and e_2
4. if $e_1 < e_2$ then
5. $P \leftarrow P_1$, where P_1 is the set of permutations in P
 consistent with $e_1 < e_2$
6. else
7. $P \leftarrow P_2$, where P_2 is the set of permutations in P
 consistent with $e_1 > e_2$
8. return the permutation in P

Various algorithms differ in how they implement Step 3.
A Worst-Case Lower Bound

- Note that one of P_1 and P_2 contains at least half of the permutations in P (i.e., either $|P_1| \geq |P|/2$ or $|P_2| \geq |P|/2$).
- The worst case happens when P always shrinks to the larger set between P_1 and P_2.
- In this case, the size of P shrinks by at most half after each comparison.
- Hence, the number of comparisons required before $|P|$ decreases to 1 is $\log_2(n!)$.

The next slide shows $\log_2(n!) = \Omega(n \log n)$.
A Worst-Case Lower Bound

\[
\log_2(n!) = \sum_{i=1}^{n} \log_2 i
\]

\[
\geq \sum_{i=n/2}^{n} \log_2 i
\]

\[
\geq \left(\frac{n}{2}\right) \log_2 \left(\frac{n}{2}\right)
\]

\[
= \Omega(n \log n).
\]

We now conclude that any comparison-based algorithm must incur \(\Omega(n \log n)\) time sorting \(n\) elements in the worst case.