The k-Selection Problem (Det.)
(Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
The k-Selection Problem

Input

You are given a set S of n integers in an array and an integer $k \in [1, n]$.

Output

The k-th smallest integer of S.
We will describe an algorithm solving the problem \textit{deterministically} in \(O(n)\) time.

Recall:

Define the \textbf{rank} of an integer \(v\) in \(S\) as the number of elements in \(S\) smaller than or equal to \(v\).

For example, the rank of 23 in \(\{76, 5, 8, 95, 10, 31\}\) is 3, while that of 31 is 4.
A Deterministic Algorithm

We will assume that \(n \) is a multiple of 10 (if not, pad up to 9 dummy elements larger than everything else).

Step 1: Divide \(A \) into disjoint subsets of size 5, each referred to as a chunk.

Step 2: From each chunk, identify the median of the 5 elements therein. Collect all the \(n/5 \) medians into an array \(B \).

Step 3: Recursively run the algorithm to find the median \(p \) of \(B \).
A Deterministic Algorithm

Step 4: Find the rank r of p in A.

Step 5:

- If $r = k$, return p.
- If $r < k$, produce an array A' containing all the elements of A less than p. Recursively find the k-th smallest element in A'.
- If $r > k$, produce an array A' containing all the elements of A greater than p. Recursively find the $(k - r)$-th smallest element in A'.

The k-Selection Problem (Det.)
Lemma

The value of r falls in the range from $\lceil(3/10)n\rceil$ to $\lceil(7/10)n\rceil + 7$.

Proof: Let us first prove the lemma by assuming that n is a multiple of 10.

Let C_1 be the set of chunks whose medians are at most p. Let C_2 be the set of chunks whose medians are larger than p.

Note that $|C_1| = |C_2| = n/10$.
Analysis

Every chunk in C_1 contains at least 3 elements at most p. Hence:

\[r \geq 3|C_1| = \frac{3}{10}n. \]

Every chunk in C_2 contains at least 3 elements larger than p. Hence:

\[r \leq n - 3|C_2| = \frac{7}{10}n. \]

It thus follows that when n is a multiple of 10, $r \in [\frac{3}{10}n, \frac{7}{10}n]$.
Analysis

Now consider that n is not a multiple of 10. Let n' be the lowest multiple of 10 at least n. Hence, $n \leq n' \leq n + 9$. By our earlier analysis:

$$(3/10)n' \leq r \leq (7/10)n'$$

\Rightarrow

$$(3/10)n \leq r \leq (7/10)(n + 9) = (7/10)n + 7$$

\Rightarrow

$$\lceil (3/10)n \rceil \leq r \leq (7/10)(n + 9) < \lceil (7/10)n \rceil + 7$$

where the last step used the fact that r is an integer.
Let \(f(n) \) be the worst-case running time of our algorithm on \(n \) elements.

We know that when \(n \) is at most a certain constant, \(f(n) = O(1) \).

For larger \(n \):

\[
f(n) = f(\lceil (n + 9)/5 \rceil) + f(\lceil (7/10)n \rceil + 7) + O(n).
\]

The recurrence solves to \(f(n) = O(n) \) (the substitution method).