Charging Arguments
[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In general, if a data structure can process any \(n \) operations in \(f(n) \) time, we say that it guarantees an **amortized cost** of \(\frac{f(n)}{n} \) per operation.

Today, we will learn a **charging argument** technique to prove amortized costs.
Consider \(n \) operations on a data structure. The \(i \)-th (\(1 \leq i \leq n \)) operation incurs cost \(C_i \). Our goal is to prove:

\[
\sum_{i=1}^{n} C_i \leq f(n). \tag{1}
\]

Suppose that we can assign a “fake” cost \(\overline{C_i} \leq \frac{f(n)}{n} \) to the \(i \)-th operation such that

\[
\sum_{i=1}^{n} C_i \leq \sum_{i=1}^{n} \overline{C_i}. \tag{2}
\]

(1) will then follow from (2).
Recall: the Dynamic Array Problem

Let S be a collection of integers (not necessarily distinct). S is empty in the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an array A satisfying:

1. A has length $O(n)$.
2. For each $i \in [1, n]$, $A[i] = x$ if x is the i-th integer added to S.

The above requirements need to be satisfied after every insertion.
Recall: The Expansion Algorithm

\[n = 1 \]

\[n = 2 \]

\[n = 3 \]

\[n = 4 \]

\[n = 5 \]

...

\[n = 8 \]
Charging Argument

Earlier, we proved that each insertion has amortized cost $O(1)$. Next, we give an alternative analysis for proving the same.

Our algorithm ensures an invariant:

After an expansion, the new array has size $2n$, namely, there are n empty positions.
Let C_i be the actual cost of the i-th insertion.

We will assign an \textbf{amortized cost} \bar{C}_i to the i-th insertion.
Charging Argument

For the n-th operation, first set $C_n = O(1)$.

If the array does not expand, done.

An array expansion takes at most cn time for some constant c.
⇒ The previous expansion happened when S had $n/2$ elements.
⇒ $n/2$ empty positions in the previous array.
⇒ $n/2$ insertions have taken place since the previous expansion.
⇒ **Charge the cn cost over those $n/2$ insertions**: for each of those insertions, add $\frac{cn}{n/2} = 2c = O(1)$ to its amortized cost.
Example

\[
\begin{align*}
n &= 1 \\
\text{expanding cost charged on the insertion of the 2nd element}
\end{align*}
\]

\[
\begin{align*}
n &= 2 \\
\text{expanding cost charged on the insertion of the 2nd element}
\end{align*}
\]

\[
\begin{align*}
n &= 3 \\
\text{expanding cost charged on the insertions of elements 3, 4}
\end{align*}
\]

\[
\begin{align*}
n &= 4 \\
\text{expanding cost charged on the insertions of elements 3, 4}
\end{align*}
\]

\[
\begin{align*}
n &= 5 \\
\text{expanding cost charged on the insertions of elements 3, 4}
\end{align*}
\]

\[
\begin{align*}
n &= 8 \\
\text{expanding cost charged on the insertions of elements 5-8}
\end{align*}
\]

Each insertion is charged at most once.
Charging Argument

Convince yourself:

\[
\sum_{i=1}^{n} C_i \leq \sum_{i=1}^{n} \overline{C}_i
\]

and

\[
\overline{C}_i = O(1).
\]

Therefore, the total cost of all the \(n \) operations is \(O(n) \).
The Stack-with-Array Problem

Let S be a collection of integers (not necessarily distinct). We want to support:

- **push(e):** add an integer e into S.
- **pop:** remove the most recently inserted integer from S.

At any moment, let m be the number of elements in S. We want to store all the elements of S in an array A satisfying:

1. A has length $O(m)$

We will denote by n the number of operations processed so far.
The Stack-with-Array Problem

We will give an algorithm for maintaining such an array by handling \(n \) operations in \(O(n) \) time, namely, each operation is processed in \(O(1) \) amortized time.
The Stack-with-Array Problem

1. A is **full** if all its cells are filled.
2. A is **sparse** if at most 1/4 of its cells are filled.

We will enforce an invariant:

At creation, an array is **half full** (i.e., half of its cells are filled).
Push

Carry out $\text{push}(e)$ in the same way we perform an insertion in the dynamic array problem.
Perform pop as follows:

- Return the last element of A and decrease n by 1. If A is sparse, then:
 - Initialize an array A' of length $2n$.
 - Copy all the n elements of A over to A'.
 - Destroy A and replace it with A'.

Pop

Charging Arguments
Example

11 pushes followed by 9 pops on an initially empty stack:

\[n = 1, \text{push} \]

\[n = 2, \text{push} \]

\[\ldots \]

\[n = 4, \text{push} \]

\[\ldots \]

\[n = 8, \text{push} \]

\[\ldots \]

\[n = 11, \text{push} \]
Example

...

\(n = 17 \) pop

\[
\begin{array}{cccccccccccccccc}
\text{Red} & \text{Pink} & \text{Green} \\
\end{array}
\]

\(n = 18 \), pop

\[
\begin{array}{cccccccccccccccc}
\text{Red} & \text{Red} & \text{Pink} & \text{Green} \\
\end{array}
\]

\(n = 19 \), pop

\[
\begin{array}{cccccccccccccccc}
\text{Red} & \text{Red} & \text{Red} & \text{Pink} & \text{Green} \\
\end{array}
\]

\(n = 20 \), pop

\[
\begin{array}{cccccccccccccccc}
\text{Red} & \text{Red} & \text{Red} & \text{Red} & \text{Pink} & \text{Green} & \text{Green} & \text{Green} & \text{Green} & \text{Green} & \text{Green} \\
\end{array}
\]
Think: how to prove that each operation incurs only $O(1)$ amortized cost?