More on Hashing

CSCI2100 Tutorial 8
Shangqi Lu

Adapted from the slides of the previous offerings of the course
Review on Hash Table

- Given a set of integers S in $[1, U]$
- Main idea: divide S into a number m of disjoint subsets
- Guaranteed
 - Space consumption: $O(n)$
 - Query cost: $O(1)$ in expectation
 - Preprocessing cost: $O(n)$
Review on Hash Table

• No single hash function works for all sets
• Construct a hash function from a universal family
 • Pick a prime number p such that $p \geq m$ and $p \geq U$
 • Choose an integer α from $[1, p-1]$ uniformly at random
 • Choose an integer β from $[0, p-1]$ uniformly at random
 • Define a hash function:
 $$h(k) = 1 + ((\alpha k + \beta) \mod p) \mod m$$
Example

• Let $S = \{33, 42, 70, 38, 6, 22, 17, 51, 8, 14, 63, 27\}$

• We choose $m = 10, p = 71$, suppose that α and β are randomly chosen to be 3 and 7, respectively

• $h(k) = 1 + (((3k + 7) \mod 71) \mod 10)$
Regular Exercise 7 Problem 3

• Let S be a multi-set of n integers
• Frequency of an integer x:
 • No. of occurrences of x in S
• Design an algorithm to produce an array that sorts the distinct integers by frequency in $O(n)$ expected time
• E.g.,
 • $S = \{23,75,17,17,23\}$
 • You should output $(75,17,23)$ or $(75,23,17)$
 • If two integers have the same frequency, their relative order is not important
Solution

• First, choose a hash function \(h \) and create a hash table \(H \)

• For each integer \(x \in S \)
 • If the \(H \) already contained a copy of \(x \)
 • Ignore \(x \)
 • Else
 • Compute \(h(x) \)
 • Insert \((x, 0) \) into the \(H[h(x)] \)

• The checking in each iteration takes \(O(1) \) in expectation

• Overall: \(O(n) \) in expectation
Solution

• Second, obtain the frequency of every distinct integers

• For each integer $x \in S$
 • Find its copy in H
 • Increase the counter of the copy by one
 • Takes $O(1)$ expected time

• This part takes $O(n)$ in expectation
Solution

• Finally, sort all the distinct integers by frequency
• Since the frequency of every integer in S is in the domain $[1, n]$
• Use counting sort to sort the integers by frequency (see tutorial 6), takes $O(n)$ time
• E.g., we get [$(75, 1), (23, 2), (17, 2)$]
• Generate output from these sorted tuples, takes $O(n)$ time
• E.g., [75, 23, 17]
Time Complexity

- Overall complexity: $O(n)$ in expectation
Hash Table

• Expected query cost: $O(1)$
 • Pick a hash function from a universal family

• Worst-case query cost: $O(n)$
 • All elements are hashed into the same value

• Can we improve the worst-case query cost?
Hash Table

- Replace linked lists with arrays
- Sort the arrays, cost $O(n \log n)$ for preprocessing
Hash Table

• Query: whether 29 exists
• Step 1:
 • Access the hash table to obtain the address of corresponding array
 • Takes $O(1)$ time
Hash Table

• Query: whether 29 exists
• Step 2:
 • Perform binary search on the array to find the target
 • Takes $O(\log n)$ time
• Overall worst-case complexity: $O(\log n)$
Hash Table

• This method retains the $O(1)$ expected query time

• Proof:
 • Suppose we look up an integer q
 • Define random variable $L_{h(q)}$ to be the length of array that corresponds to the hash value $h(q)$
 • Expected query time:
 • $E[\log_2 L_{h(q)}] = \sum_{l=1}^{n} \log_2 l \Pr(L_{h(q)} = l)$
 • $\leq \sum_{l=1}^{n} l \Pr(L_{h(q)} = l)$
 • $= E[L_{h(q)}]$
 • $= O(1)$
Revisiting the Two-Sum Problem

• Problem Input:
 • A set S of unsorted n distinct integers
 • The value n has been placed in Register 1
 • A positive integer v has been placed in Register 2

• Goal:
 • Determine whether if there exist two different integers x and y in S such that $x + y = v$

• For example:
 • Find a pair whose sum is 20

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>
Solution 1: Binary Search the Answer

• Goal: Find a pair \((x, y)\) such that \(x + y = v\)
• Observe that given \(x\), \(y = v - x\), is determined
• Solution:
 • Sort \(S\)
 • For each \(x\) in \(S\):
 • set \(y\) as \(v - x\)
 • Use binary search to see if \(y\) exists in the sequence
• Time complexity: \(O(n \log_2 n)\)
Solution 2: Using the Hash Table

• Step 1 and 2:
 • Choose a hash function h and create an empty hash table H
 • Insert each x in S into $L_{h(x)}$
Solution 2: Using the Hash Table

• Step 3:
 • For each x in S:
 • Set y as $v - x$
 • Check if y is in the hash table
 • If so, return yes
 • Return no
Time Complexity

• Step 1 and 2: $O(n)$
• Step 3: $O(n)$ in expectation
• Overall: $O(n)$ in expectation