Random Permutation

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Earlier we extended the RAM model with one more atomic operator: $\text{RANDOM}(x, y)$. This operator allows us to design algorithms with randomization.

Today we will discuss a randomized algorithm for permuting the elements of an array.
The Random Permutation Problem

We have an array \(A \) of \(n \) distinct integers, say, 1, 2, ..., \(n \). We want to design an algorithm to randomly permute these integers. Namely, when our algorithm finishes, \(A \) should be storing a sequence which can be any of the \(n! \) permutations with the same chance.
Example

Suppose that \(A = (1, 2, 3) \).

We must generate each of the following sequences with probability \(1/6 \):
- \((1, 2, 3)\)
- \((1, 3, 2)\)
- \((2, 1, 3)\)
- \((2, 3, 1)\)
- \((3, 1, 2)\)
- \((3, 2, 1)\)
The Algorithm

This problem can be solved in $O(n)$ worst case time by a beautiful 3-line algorithm:

1. for $i = 1$ to n
2. $x = \text{RANDOM}(1, i)$
3. swap $A[x]$ with $A[i]$
Example

Consider again $A = (1, 2, 3)$. We will demonstrate the execution of the algorithm by enumerating all of its possible outcomes.

Notice that the algorithm generates two integers: say a for $i = 2$ and b for $i = 3$. Specifically, a can take 1 or 2 with the same probability, while b can take 1, 2, or 3 with the same probability.

So there are 6 possibilities for the (a, b) combination. Each possibility happens with probability precisely $1/6$.

The next slide shows the outcome of each possibility.
Example

- $(a, b) = (1, 1)$. Outcome: $A = (3, 1, 2)$.
- $(a, b) = (1, 2)$. Outcome: $A = (2, 3, 1)$.
- $(a, b) = (1, 3)$. Outcome: $A = (2, 1, 3)$.
- $(a, b) = (2, 1)$. Outcome: $A = (3, 2, 1)$.
- $(a, b) = (2, 2)$. Outcome: $A = (1, 3, 2)$.
- $(a, b) = (2, 3)$. Outcome: $A = (1, 2, 3)$.

Indeed, A has been randomly permuted — each of the 6 permutations happens with probability $1/6$.
Proof of Correctness

Remark: The proof will not be tested in exams.

We will prove that the algorithm is correct for any value of n by induction. Correctness for $n = 1$ is obvious.

Assuming that the algorithm is correct for permuting $n - 1$ elements, next we prove that it is also correct for permuting n elements.
Consider the for-loop with $i = n$. By the inductive assumption, now the first $n - 1$ positions of A are storing a random permutation of $1, 2, \ldots, n - 1$.

That is, at this moment, each of the $(n - 1)!$ permutations is $(A[1], A[2], \ldots, A[n - 1])$ with probability exactly $1/(n - 1)!$.

Yufei Tao

Random Permutation
Due to symmetry, consider any of those \((n - 1)\) permutations
\((A[1], A[2], ..., A[n - 1])\). The for-loop with \(i = n\) will generate
each of the following \(n\) permutations with the same probability \(1/n\):

- \((n, A[2], ..., A[n - 1], A[1])\)
- ...
- \((A[1], ..., A[i - 1], n, A[i + 1]..., A[n - 1], A[i])\)
- ...
- \((A[1], ..., A[n - 1], n)\)

It now follows that each of the \(n!\) permutations of \((1, 2, ..., n)\) is
generated with probability precisely \(1/n!\).