Examples and Applications of Binary Search

CSCI2100 Tutorial 1
Shangqi Lu

Adapted from the slides of the previous offerings of the course
Outline

• We will first review the binary search algorithm through an example
• And then use the algorithm to solve a "two-sum" problem.
Binary Search Review

• Suppose we have the following sorted input set S, and are trying to find the value 13.
Binary Search Review

- Initializing L to be 1 and R to n (in this case, 8)
Binary Search Review

• Since \(L \leq R \)
• Proceed by computing \(M = (L + R)/2 \)
Binary Search Review

• Compare \(v = 13 \) and the value 8 indexed by \(M \)
• \(v > \) the value indexed by \(M \)
• Means that the target is in the right half of the sorted sequence
Binary Search Review

- Look at the right half of the sorted sequence
- Set L to be $M + 1$ (discard the left half)
- Recompute M
Binary Search Review

• Compare \(v \) and the value 21 indexed by \(M \)
• \(v < \) the value indexed by \(M \)
• Means that the target is in the left half of the sorted sequence
Binary Search Review

• Set R to be $M - 1$ (discard the right half)
• $L, R, M = 5$
• $v = \text{the value indexed by } M$, return “yes”
The Two-Sum Problem

• Problem Input:
 • A sequence of n positive integers in strictly increasing order in memory at the cells numbered from 1 up to n
 • The value n has been placed in Register 1
 • A positive integer v has been placed in Register 2

• Goal:
 • Determine whether if there exist two different integers x and y in the sorted sequence such that $x + y = v$

\[
\begin{array}{cccccccccccc}
2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & \ldots
\end{array}
\]
Example

• A “yes”-input with $n = 12, v = 30$
Example

- A “no”-input with $n = 12$, $v = 29$
A First Attempt

• Naïve algorithm:
 • Enumerate all possible pairs in the sorted sequence
 • Check if they sum to \(v \)
 • There are \(\binom{n}{2} = \frac{n(n-1)}{2} \) possible pairs
 • Time complexity: \(O(n^2) \)

• Can we do better than this?

• Hint: Take advantage of the fact that the given sequence is sorted!
Binary Search the Answer

• Goal: Find a pair \((x, y)\) such that \(x + y = v\)

• Observe that given \(x\), \(y = v - x\), is determined

• Improve the naïve algorithm
 • Instead of enumerating all possible \(y\), we can find if there exits an integer \(v-x\)
 in the sequence

• Solution:
 • For each \(x\) in the sequence:
 • set \(y\) as \(v - x\)
 • Use binary search to see if \(y\) exists in the sequence
The Repeated Binary Search Algorithm

• Pseudocode:

1. Let n be register 1 and v be register 2
2. register $i ← 1$, register $one ← 1$
3. while $i ≤ n$
4. read into register x the memory cell at address i
5. $y ← v − x$
6. if $BinarySearch(y) = “yes”$
7. return “yes”
7. $i ← i + one$ (effectively increasing i by 1)
8. return “no”
Time Complexity

• Worst case (when the output is “no”)
• This algorithm needs to run binary search n times
• Time complexity of binary search: $O(\log_2 n)$
• Time complexity of this algorithm: $O(n \log_2 n)$

• Can we do even better?
• Actually this problem can be solved in $O(n)$ time --- left for you to try outside the class.