Problem 1. Let \(G = (V, E) \) be a directed graph. Suppose that we perform BFS starting from a source vertex \(s \), and obtain a BFS-tree \(T \). For any vertex \(v \in V \), denote by \(l(v) \) the level of \(v \) in the BFS-tree. Prove that BFS enqueues the vertices \(v \) of \(V \) in non-descending order of \(l(v) \).

Solution. Take any vertices \(u, v \) such that \(l(u) > l(v) \). Let \(v_1, v_2, \ldots, v_{l(v)} \) be the vertices on the path from the root to \(v \) in \(T \); note that \(v_1 = s \) and \(v_{l(v)} = v \). Let \(u_1, u_2, \ldots, u_{l(v)} \) be the last \(l(v) \) vertices on the path from the root to \(u \) in \(T \); note that \(u_1 \neq s \) and \(u_{l(v)} = u \). It thus follows that \(v_1 \) is en-queued before \(u_1 \). Remember that BFS en-queues \(v_2 \) when de-queuing \(v_1 \), and similarly, enqueues \(u_2 \) when de-queuing \(u_1 \). By the FIFO property of the queue, we know that \(v_2 \) is en-queued before \(u_2 \). By the same reasoning, \(v_3 \) is en-queued before \(u_3 \), \(v_4 \) before \(u_4 \), etc. This means that \(v \) is before \(u \).

Problem 2. Let \(G = (V, E) \) be a directed graph. Suppose that we perform BFS starting from a source vertex \(s \), and obtain a BFS-tree \(T \). For any vertex \(v \in V \), prove that the path from \(s \) to \(v \) in \(T \) is a shortest path from \(s \) to \(v \) in \(G \).

Solution. We will instead prove the following claim: all the vertices with shortest path distance \(l \) from \(s \) are at level \(l \) (recall that the root is at level 0). This will establish the conclusion in Problem 3 because the path from \(s \) to a level-\(l \) node \(v \) in \(T \) has length \(l \).

We will prove the claim by induction on \(l \). The base case where \(l = 0 \) is obviously true.

Assuming that the claim holds for all \(l \leq k - 1 \) \((k \geq 1) \), next we prove that the claim is also true for \(l = k \). Let \(v \) be a vertex with shortest path distance \(k \) from \(s \). Consider all the shortest paths from \(s \) to \(v \). From every such shortest path, take the vertex immediately before \(v \) (i.e., the predecessor of \(v \) in that path), and put that vertex into a set. Let \(S \) be the set of all such “predecessors of \(v \)” collected. Let \(u \) be the vertex in \(S \) that is the earliest one entering the queue. We know that the shortest path distance from \(s \) to \(u \) is \(k - 1 \). It thus follows from the inductive assumption that \(u \) is at level \(k - 1 \) of \(T \).

Consider the moment when \(u \) is removed from the queue in BFS. We will argue that the color of \(v \) must be white. Hence, BFS makes \(v \) a child of \(u \), thus making \(v \) at level \(k \).

Suppose for contradiction that the color of \(v \) is gray or black. This means that \(v \) has been put into the queue when another vertex \(u' \) was de-queued earlier. From the conclusion of Problem 2 and the definition of \(u \), we know that \(l(u') < l(u) \). From the inductive assumption, this means that the shortest path distance of \(u' \) from \(s \) that is less than \(k - 1 \), implying that the shortest path distance from \(s \) to \(v \) is less than \(k \), thus giving a contradiction.

Problem 3. Let \(G = (V, E) \) be an undirected graph. We will denote an edge between vertices \(u, v \) as \(\{u, v\} \). Next, we define the single source shortest path (SSSP) problem on \(G \). Define a path from \(s \) to \(t \) as a sequence of edges \(\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_t, v_{t+1}\} \), where \(t \geq 1 \), \(v_1 = s \), and \(v_{t+1} = t \). The length of the path equals \(t \). Then, the SSSP problem gives a source vertex \(s \), and asks to find shortest paths from \(s \) to all the other vertices in \(G \). Adapt BFS to solve this problem in \(O(|V| + |E|) \) time. Once again, you need to produce a BFS tree where, for each vertex \(v \in V \), the path from the root to \(v \) gives a shortest path from \(s \) to \(v \).
Solution. Same as BFS, except that when a vertex v is de-queued, we inspect all its neighbors (as opposed to its out-neighbors as in the directed version).

Problem 4 (Connected Components). Let $G = (V, E)$ be an undirected graph. A connected component (CC) of G includes a set $S \subseteq V$ of vertices such that

- For any vertices $u, v \in S$, there is a path from u to v, and a path from v to u.
- (Maximality) It is not possible to add any vertex into S while still ensuring the previous property.

For example, in the above graph, $\{a, b, c, d, e\}$ is a CC, but $\{a, b, c, d\}$ is not, and neither is $\{g, f, e\}$.

Prove: Let S_1, S_2 be two CCs. Then, they must be disjoint, i.e., $S_1 \cap S_2 = \emptyset$.

Solution. Suppose that a vertex v is in $S_1 \cap S_2$. Then, for any vertex $u_1 \in S_1$ and $u_2 \in S_2$, we know:

- There is a path from u_1 to u_2 by way of v.
- There is a path from u_2 to u_1 by way of v.

This violates the fact that S_1 and S_2 must be maximal.

Problem 5. Let $G = (V, E)$ be an undirected graph. Describe an algorithm to divide V into a set of CCs. For example, in the example of Problem 5, your algorithm should return 3 CCs: $\{a, b, c, d, e\}$, $\{g, f\}$, and $\{h, i, j\}$.

Solution. Run BFS starting from an arbitrary vertex in V. All the vertices in the BFS-tree constitute the first CC. Then, start another BFS from an arbitrary vertex that is still white. All the vertices in this BFS-tree constitute another CC. Repeat this until V has no more white vertices.