The van Emde Boas Structure
[Notes for ESTR2102]

Yufei Tao

CSE Dept
CUHK
We have already learned that a predecessor can be found in $O(\log n)$ time after suitable preprocessing. Today, we will derive another bound when the underlying set consists of only integers in the domain $[1, U]$. Our new structure—called the van Emde Boas (vEB) structure—achieves the query time of $O(\log \log U)$.

Yufei Tao

The van Emde Boas Structure
Predecessor Search

Let S be a set of n integers, each of which comes from the domain $[1, U]$. We want to store S in a data structure to support:

- A predecessor query: give an integer q, find its predecessor in S, which is the largest integer in S that does not exceed q.

We will assume that $U = 2^{2^{\alpha}}$ for some integer $\alpha \geq 0$. This assumption is made without loss of generality (this will be obvious, and will be left to you).
vEB-Structure

We will describe the vEB-structure in a recursive manner.

Base Case: If $U = 2$, we simply store S in a linked list.
vEB-Structure

General Case: Now consider that $U > 2$.

We divide the universe $[1, U]$ into disjoint segments, each of which has length \sqrt{U}. Note that by our assumption that $U = 2^{2^\alpha}$, \sqrt{U} is always an integer.

We can therefore label the segments from left to right with ids $1, 2, ..., \sqrt{U}$. If a segment contains at least one integer of S, we say that the segment is non-empty; otherwise, it is empty.

For every non-empty segment σ, denote by $S(\sigma)$ the set of integers of S covered by σ.
vEB-Structure

General Case (cont.):

Structure 1: Let B be the set of non-empty segments’ ids. Build a hash table H to answer the following query: given an integer $i \in [1, \sqrt{U}]$, is $i \in B$?

Structure 2: Store with each non-empty segment σ the largest integer in $S(\sigma)$, which is denoted as $\text{max}(s)$. Store also the largest integer in the non-empty segment immediately preceding σ, which is denoted as $\text{leftmax}(s)$.

Yufei Tao
The van Emde Boas Structure
General Case (cont.): Now here comes the recursive part.

Structure 3: Build a vEB-structure to answer predecessor queries on B in the universe $[1, \sqrt{U}]$.

Structure 4: Each non-empty segment σ defines a universe of its own with length \sqrt{U}. Build a vEB-structure to answer predecessor queries on $S(\sigma)$ in that universe.

Note that the recursion eventually ends because the universe keeps shrinking.
Let us now discuss how to answer a query with search value \(q \).

First, obtain the id \(x \) of the segment containing \(q \):
\[
x = \lceil \frac{q}{\sqrt{U}} \rceil.
\]
Then, do dictionary search on \(H \) to find out whether \(x \in B \).

- If no: it means that segment \(x \) is empty. We know that the predecessor of \(q \) equals \(max(\sigma) \), where \(\sigma \) is the non-empty segment whose id is the predecessor of \(x \) in \(B \). Hence, solve the query by performing predecessor search on Structure 3.

- If yes: then segment \(x \) is non-empty—denote it by \(\sigma \). Obtain \(leftmax(\sigma) \). Find the predecessor \(y \) of \(q \) on \(S(\sigma) \) (recursively using Structure 4). If \(y \) exists, it is the final answer; otherwise, the final answer is \(leftmax(\sigma) \).
Query Time Analysis

Let $f(U)$ be the time of a query when the universe has length U.

Searching H takes $O(1)$ time (use perfect hashing to achieve worst case). In either the yes or the no case, we do one query in a smaller universe of length \sqrt{U}. Hence:

$$f(U) \leq O(1) + f(\sqrt{U})$$

with the terminating condition that $f(2) = O(1)$.

Solving the recurrence gives $f(U) = O(\log \log U)$ (worst case).
Let $g(n, U)$ be the space of a van Emde Boas structure of n elements in a universe of length U.

Structures 1 and 2 obviously occupy only $O(n)$ space. Structure 3 takes $g(n, \sqrt{U})$ space. Regarding Structure 4, suppose that we have t non-empty segments, covering $n_1, n_2, ..., n_t$ integers of S, respectively ($\sum_{i=1}^{t} n_i = n$). We know that the vEB-structure on the i-th ($1 \leq i \leq t$) segment requires $g(n_i, \sqrt{U})$ space. Hence:

$$g(n, U) \leq O(n) + g(n, \sqrt{U}) + \sum_{i=1}^{t} g(n_i, \sqrt{U})$$

with the terminating condition that $g(n, U) = O(1)$ when either n or U is at most a constant.

Solving the recurrence gives $g(n, U) = O(n \log U)$.
Next, we will reduce the space to $O(n)$, without affecting the query time, using a technique called bootstrapping.
Bootstrapping

Sort all the integers of S. Divide S into disjoint intervals, each of which covers $\log_2 U$ integers of S, except possibly the last one. There are $O(n/\log U)$ intervals.

Create a set S' by taking the smallest integer of S in each interval.

For each interval, create a binary search tree (BST) on the at most $\log_2 U$ integers therein.

Create a vEB-structure on S'.

Overall space is now $O(n)!$. Note that the vEB-structure on S' takes $O\left(\frac{n}{\log U} \log U\right) = O(n)$ space.
Now let us see how to answer a query with search value q.

First, find the predecessor x of q in S'. This takes $O(\log \log U)$ time using the vEB-structure.

Then, go to the interval containing x, and find the predecessor of q within that interval. This takes $O(\log \log U)$ time using the BST of that interval—recall that the BST stores only $O(\log U)$ elements.

The overall query time is therefore $O(\log \log U)$.