Linear Time Sorting in a Polynomial Domain

[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Recall that counting sort is able to sort n integers in the range from 1 to U in $O(n + U)$ time. The running time is expensive. We will significantly improve this by describing how to sort in $O(n)$ time for any $U \leq n^c$, where c is a constant (e.g., 10).

The new algorithm is called \textit{radix sort}.
Without loss of generality, we will consider that \(n \) is a power of 2 (why no generality is lost?). Hence, every integer can be represented by \(c \log_2 n \) bits (in binary form), which we denote as \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_2 b_1 \), where \(b_1 \) is the least significant bit.

For every integer \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_2 b_1 \), we divide the bits into \(c \) disjoint chunks, each of which contains \(\log_2 n \) bits:

- The first chunk contains the right most \(\log_2 n \) bits, namely, \(b_{\log_2 n} b_{\log_2 n - 1} ... b_1 \).
- The second chunk contains the next \(\log_2 n \) bits, namely, \(b_{2 \log_2 n} b_{2 \log_2 n - 1} ... b_{\log_2 n + 1} \).
- ...
- The last chunk contains the left most \(\log_2 n \) bits, namely, \(b_{c \log_2 n} b_{c \log_2 n - 1} ... b_{(c-1) \log_2 n + 1} \).
For any integer \(x = b_{c \log_2 n} b_{c \log_2 n-1} \ldots b_2 b_1 \), and any \(i \in [1, c] \), we can obtain an integer whose binary form corresponds to the \(i \)-th chunk as follows:

- Calculate \(y = x \mod n^i \). The binary form of \(y \) corresponds to the rightmost \(i \cdot \log_2 n \) bits of \(x \). If \(i = 1 \), then return \(y \). Otherwise, proceed to the next step.
- Return \(y/n^{i-1} \) (integer division).

We can prepare \(n, n^2, n^3, \ldots, n^c \) in advance to ensure that \(y \) can be calculated in \(O(1) \) time. The values of \(n, n^2, n^3, \ldots, n^c \) can be calculated in \(O(c) = O(1) \) total time.
Example

Suppose that $c = 4$, $n = 16$, and $x = 011011000010$ (i.e., 1730 in decimal). To get its 2nd chunk, we do:

1. $y = x \mod n^2 = 1730 \mod 256 = 194$
2. We return $y/n = 194/16 = 12$.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x.
Recall: Stable Counting Sort

In the tutorial, we described a variant of counting sort that solves the following “stable key-value sorting” problem in $O(n)$ time.

The input is a set S of n key-value pairs of the form (k, v), where k is the key and v is the value. These pairs have been sorted in an array A. Every key k is in the range from 1 to n.

The goal is to produce an array B that stores these pairs in non-descending key order. Furthermore, the sorting must be stable in the following sense. For any two pairs (k_1, v_1) and (k_2, v_2) such that $k_1 = k_2$, if (k_1, v_1) is positioned earlier than (k_2, v_2) in A, this must also be true in B.
We now return to our problem. Let A be the input array of n integers. We sort them by executing the stable counting sort algorithm of the previous slide c times:

- Sort A by their 1st chunks. Replace A with the array output (by stable counting sort).
- Sort A by their 2nd chunks. Replace A with the array output.
- ...
- Sort A by their c-th chunks. Replace A with the array output.

Return the final A.

Analysis

Correctness guaranteed by stability.

Running time clearly $c \cdot O(n) = O(n)$.