More on “Binary Heaps”

CSCI2100 Tutorial 8

Jianwen Zhao

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Introduction

In the previous lectures, we have implemented the priority queue (which supports \texttt{insert(e)} and \texttt{delete-min} operations) using a data structure called the \textit{binary heap} and achieved the following guarantees:

- $O(n)$ space consumption
- $O(\log n)$ insertion time
- $O(\log n)$ delete-min time

In this tutorial, we will try to enhance our understanding of the binary heap through some examples and exercises.
Example on Building a Binary Heap

Recap

Given an array A that stores a set S of n integers, we can turn it into a binary heap on S using the following simple algorithm, which views A as complete binary tree T:

- For each $i = n$ downto 1
 - Perform root-fix on the subtree of T rooted at $A[i]$

root-fix: Given a complete binary tree T with root r. This operation guarantees that:

 - The left subtree of r is a binary heap
 - The right subtree of r is a binary heap
Example on Building a Binary Heap

Let $S = \{53, 27, 18, 91, 15, 3, 20, 37\}$, we store S into an array A:

$$A: \begin{array}{cccccccc} 53 & 27 & 18 & 91 & 15 & 3 & 20 & 37 \end{array}$$

View A as a complete binary tree T:

Now, we turn this complete binary tree into a binary heap.
Example on Building a Binary Heap

CSCI2100, The Chinese University of Hong Kong
Example on Insertion

Now we have built a binary heap. This building process just takes $O(n)$ time, which has been proved in our lecture.

Assume that we want to insert 12 into this binary heap. First, add 12 as a leaf, making sure that we still have a complete binary tree.

```
    3
   / \
  15 18
 / \ /  \
37 27 53 20
 / \     \
91 12
```
Then we fix the violations caused by this newly added element.

No more violations, insertion complete. An insertion can be processed in $O(\log n)$ time.
Example on Delete-min

Assume that we want to perform delete-min from this binary heap below:

First, find the rightmost leaf at the bottom level, namely, 37.
Example on Delete-min

Remove this leaf, but place the value 37 in the root.

```
         37
        /   \
       12    18
      /     /  \
    15     27   53
     |       |    |
    91      20
```
Example on Delete-min

Then we fix the violations caused by 37.

No more violations, delete-min complete. A delete-min can be processed in $O(\log n)$ time.
Problem

Suppose that we have \(k \) sorted arrays (in ascending order) \(A_1, A_2, \ldots, A_k \) of integers. Let \(n \) be the total number of integers in those arrays. Describe an algorithm to produce an array that sorts all the \(n \) integers in ascending order in \(O(n \log k) \) time.

Example

Suppose that \(k = 3 \), and the 3 arrays are as follows:

\[
\begin{align*}
A_1 & : 2 \ 23 \ 32 \ 35 \ 37 \\
A_2 & : 5 \ 10 \\
A_3 & : 33 \ 58 \ 82
\end{align*}
\]

Then you should produce an array \(B \) as below in \(O(n \log k) \) time.

\[
\begin{align*}
B & : 2 \ 5 \ 10 \ 23 \ 32 \ 33 \ 35 \ 37 \ 58 \ 82
\end{align*}
\]
Regular Exercise 8 Problem 5

Solution

Insert the smallest elements of each array into a binary heap H. This takes $O(k \log k)$ time. Then, repeat the following until H is empty:

- Perform a `delete-min`. Let e be the element fetched.
- Append e to the output array.
- If e comes from A_i (for some i), obtain the next element from A_i, and insert it into H. If A_i has been exhausted, then do nothing.
Example

Suppose that $k = 3$, and the 3 arrays are as follows:

A_1: 2 23 32 35 37 \quad A_2$: 5 10 \quad A_3$: 33 58 82

First, we insert the smallest elements of each array into a binary heap H:

2
 /
 5 33

Initially, the output array B is empty.

B: \\
 \\
 \\
 \\
 \\
 \\
 \\

Regular Exercise 8 Problem 5

Example

\[A_1: 2 \ 23 \ 32 \ 35 \ 37 \quad A_2: 5 \ 10 \quad A_3: 33 \ 58 \ 82 \]

Then, we perform a **delete-min** on \(H \), and fetch \(e = 2 \), then append 2 to the output array \(B \). Since \(e \) comes from \(A_1 \), we obtain the next element 23 from \(A_1 \), and insert it into \(H \).

Diagram:

```
  2
 / \
5 33
⇒ delete-min ⇒ 33 ⇒ insert(23) ⇒ 33 23
```

Output array \(B \): 2
Example

\[A_1: \begin{array}{cccccc}
2 & 23 & 32 & 35 & 37 \\
\end{array} \quad A_2: \begin{array}{ccc}
5 & 10 \\
\end{array} \quad A_3: \begin{array}{cccc}
33 & 58 & 82 \\
\end{array} \]

Perform another delete-min on the new \(H \), and fetch \(e = 5 \), then append 5 to the output array \(B \). Since \(e \) comes from \(A_2 \), we obtain the next element 10 from \(A_2 \), and insert it into \(H \).

Output array \(B \): 2 5
A_1: 2 23 32 35 37 A_2: 5 10 A_3: 33 58 82

10
\[\frac{}{} \]
33 23
\Rightarrow delete-min \Rightarrow

23
\[\frac{}{} \]
33
\Rightarrow do nothing

Output array B: 2 5 10

A_1: 2 23 32 35 37 A_2: 5 10 A_3: 33 58 82

23
\[\frac{}{} \]
33
\Rightarrow delete-min \Rightarrow

Output array B: 2 5 10 23
More on “Binary Heaps”

Output array B: 2 5 10 23 32
A_1: 2 23 32 35 37 A_2: 5 10 A_3: 33 58 82

35
down
58 \Rightarrow delete-min \Rightarrow 58 \Rightarrow insert(37) \Rightarrow 58

Output array B: 2 5 10 23 32 33 35

A_1: 2 23 32 35 37 A_2: 5 10 A_3: 33 58 82

37
down
58 \Rightarrow delete-min \Rightarrow 58 \Rightarrow A_1 exhausted \Rightarrow do nothing

Output array B: 2 5 10 23 32 33 35 37
Finally, we produce the output array B with all the $n = 10$ elements sorted in ascending order:
Cost Analysis

- Insert the smallest elements of each array into a binary Heap H takes $O(k \log k)$ time.
- Each delete-min and insertion require $O(\log k)$ time.
 - Since H has at most k elements.
- At most n delete-min and n insertions.
 - Since those arrays contain n elements in total.

Overall, our algorithms takes $O(k \log k) + n \cdot O(\log k) = O(n \log k)$ time.
Special Exercise 8 Problem 6

Problem

Let \(S \) be a dynamic set of integers. At the beginning, \(S \) is empty. Then, new integers are added to it one by one, but never deleted. Let \(k \) be a fixed integer. Describe an algorithm which achieves the following guarantees:

- **Space consumption** \(O(k) \)
- **Insert\((e)\)**: Insert a new element \(e \) into \(S \), which takes at most \(O(\log k) \) time.
- **Report-top-\(k \)**: Report the \(k \) largest integers in \(S \).

Example

Suppose that \(k = 3 \), and the sequence of integers inserted is 83, 21, 66, 5, 24, 76, 92, 33, 43, \cdots. Your algorithm must be keeping \{83, 66, 24\} after the insertion of 24, \{83, 66, 76\} after the insertion of 76, and \{83, 76, 92\} after the insertion of 43.
Solution 1

We maintain a binary heap with k elements, which obviously consumes $O(k)$ space.

- First, perform k insertions to build a binary heap H rooted at r on the first inserted k elements of S, and each insertion takes at most $O(\log k)$ time.

- For a newly inserted integer e, compare it with the root r of H:
 - If $e > r$, replace r with e, and perform root-fix on H.
 - This takes $O(\log k)$ time.
 - Otherwise, ignore e.

- Then, at any moment, H contains the k largest integers of S.
 - Report-top-$k = \text{Report}(H)$.
Example

Suppose that the sequence of integers inserted is: 83, 21, 66, 5, 24, 76, 92, 33, 43, ⋯, and \(k = 3 \).

First of all, build a binary heap \(H \) on the first inserted 3 elements \{83, 21, 66\}:

```
    21
   /  \
  83   66
```
Example

Suppose that the sequence of integers inserted is: 83, 21, 66, 5, 24, 76, 92, 33, 43, \ldots, and \(k = 3 \).

Next, we perform insertions one by one, and see what will happen on our binary heap \(H \):

\[
\begin{align*}
21 & \quad \Rightarrow \text{insert}(5) \Rightarrow \\
83 & \quad 66 \\
\Rightarrow \text{insert}(24) \Rightarrow \\
66 & \quad 24 \\
\Rightarrow \text{insert}(76) \Rightarrow \\
76 & \quad 92 \\
\Rightarrow \text{insert}(43) \Rightarrow
\end{align*}
\]
Solution 2

We maintain an array A with length $2k$, which obviously consumes $O(k)$ space.

- First, append the first inserted k elements of S to A.
- Append the i-th ($i > k$) inserted integer of S to A. Once A is full, do the following:
 - Perform k-selection to find the k-th largest element of A, denoted by v.
 - Remove the elements which are smaller than v from A.
 - Rearrange A such that $A[1], A[2], \cdots, A[k]$ contains the k-largest element respectively.
 - **Report-top-k.**
Example

Suppose that the sequence of integers inserted is: 83, 21, 66, 5, 24, 76, 92, 33, 43, · · · , and $k = 3$.

First of all, creat an array A with length $2k = 6$.

\[
A: \quad \square \quad \square \quad \square \quad \square \quad \square
\]

Then keep insertion one by one.
Special Exercise 8 Problem 6

Example

\[S = \{83, 21, 66, 5, 24, 76, 92, 33, 43, \ldots \}, \ k = 3. \]

\[
\begin{array}{c}
83 \Rightarrow 83 \\
\Rightarrow 83 21 \Rightarrow 83 21 66 \\
\Rightarrow 83 21 66 5 \Rightarrow 83 21 66 5 24 \\
\Rightarrow 83 21 66 5 24 76
\end{array}
\]

A is full now. We perform \textit{k-selection} to find the 3rd-largest integer, which is 66. Then remove the elements which are smaller than 66 from \(A \):

\[
\begin{array}{c}
83 66 76 \Rightarrow \text{rearrange} \Rightarrow 83 66 76
\end{array}
\]

So the \textit{top-}k (top-3) elements are \(\{83, 66, 76\} \). We can continue insertion like this.
Cost Analysis

- Append the first inserted elements of \(S \) to \(A \) takes \(O(k) \) time.
- Keep insertion, once \(A \) is full, we perform \(k \)-selection to report top-\(k \), which takes \(O(k) \) time.
- Remove the elements and rearrange \(A \) takes \(O(k) \) time.

Overall, our algorithm takes \(O(k) \) time. Charge these costs to the \(k \) insertions indicated below, each insertion bears \(O(1) \) time, and each insertion is only charged once.