Exercises on “the Growth of Functions”

CSCI2100 Tutorial 2

Jianwen Zhao (jwzhao@cse.cuhk.edu.hk)

Department of Computer Science and Engineering
The Chinese University of HongKong

Adapted from the slides of Junhao Gan
Introduction

Last week, we have learned two different ways to decide whether one function $f(n)$ grows faster than another $g(n)$:

- The first one achieves the purpose by finding appropriate “constants c_1, c_2”.
- The second is by inspecting the ratio $\frac{f(n)}{g(n)}$ as $n \to \infty$.

In this tutorial, we will apply both methods through some exercises.
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).
Exercise 1

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $f(n) = O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$f(n) = O(g(n))$, if there exist two positive constants c_1 and c_2 such that $f(n) \leq c_1 \cdot g(n)$ holds for all $n \geq c_2$.
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).

Direction 1: Constant Finding

Proof of \(f(n) = O(g(n)) \)

Our mission is to find \(c_1, c_2 \) to make \(f(n) \leq c_1 \cdot g(n) \) hold for all \(n \geq c_2 \). Remember: we do not need to find the smallest \(c_1, c_2 \); instead, it suffices to obtain any \(c_1, c_2 \) that can do the job. Indeed, we will often go for some “easy” selections that can simplify derivation.
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).

Direction 1: Constant Finding

Proof of \(f(n) = O(g(n)) \)

\[
10n + 5 \leq c_1 \cdot n^2 \\
\iff 5(2n + 1) \leq c_1 \cdot n^2 \quad \text{(let } c_1 = 5) \\
\iff 2n + 1 \leq n^2 \\
\iff 2 \leq (n - 1)^2 \\
\iff 3 \leq n
\]

Hence, it suffices to set \(c_2 = 3 \).
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).

Direction 1: Constant Finding

Proof of \(g(n) \neq O(f(n)) \)

Let us prove this by contradiction. Suppose, on the contrary, that \(g(n) = O(f(n)) \). This means the existence of constants \(c_1, c_2 \) such that, we have for all \(n \geq c_2 \)

\[
\begin{align*}
n^2 &\leq c_1 \cdot (10n + 5) \\
\Rightarrow \quad n^2 &\leq c_1 \cdot 20n \\
\iff \quad n &\leq 20c_1
\end{align*}
\]

which cannot always hold for all \(n \geq c_2 \). This completes the proof.
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).

Direction 2: Inspecting \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \)

Proof of \(f(n) = O(g(n)) \)

\[
\lim_{n \to \infty} \frac{10n + 5}{n^2} = \lim_{n \to \infty} \frac{10 + 5/n}{n} = 0.
\]

Hence, \(f(n) = O(g(n)) \).
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).

Direction 2: Inspecting \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \)

Proof of \(g(n) \neq O(f(n)) \)

\[
\lim_{n \to \infty} \frac{n^2}{10n + 5} = \infty.
\]

Hence, \(g(n) \neq O(f(n)) \).
Exercise 2

Let \(f(n) = 5 \log_2 n \) and \(g(n) = \sqrt{n} \). Prove \(f(n) = O(g(n)) \) and \(g(n) \neq O(f(n)) \).
Direction 1: Constant Finding

Proof of $f(n) = O(g(n))$

Setting $c_1 = 5$, we want:

$$5 \log_2 n \leq 5 \cdot \sqrt{n}$$

$$\Leftrightarrow \log_2 n \leq \sqrt{n}$$

Hence, it suffices to set $c_2 = 64$.
Direction 1: Constant Finding

Proof of $g(n) \neq O(f(n))$

We prove this by contradiction. Suppose that $g(n) = O(f(n))$. It implies that there exist constants c_1, c_2 such that for all $n \geq c_2$, we have

$$\sqrt{n} \leq c_1 \cdot 5 \cdot \log_2 n$$

$$\iff \frac{\sqrt{n}}{\log_2 n} \leq 5c_1$$

which cannot always hold for all $n \geq c_2$. This completes the proof.
Direction 2: Inspecting \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \)

Proof of \(f(n) = O(g(n)) \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{5 \log_2 n}{\sqrt{n}} = 0.
\]
Thus, we have \(f(n) = O(g(n)) \).

Proof of \(g(n) \neq O(f(n)) \).

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{\sqrt{n}}{5 \log_2 n} = \infty.
\]
Hence, \(g(n) \neq O(f(n)) \).
Exercise 3

Given that $10n + 5 = O(n^2)$ and $5 \log_2 n = O(\sqrt{n})$, prove $10n + 5 + 5 \log_2 n = O(n^2 + \sqrt{n})$.
Direction 1: Constant Finding

Since $10n + 5 = O(n^2)$ implies the existence of constants c_1 and c_2 such that $10n + 5 \leq c_1 \cdot n^2$ holds for all $n \geq c_2$.

Similarly, $5 \log_2 n = O(\sqrt{n})$ means there exist two constants c_1' and c_2' which make $5 \log_2 n \leq c_1' \cdot \sqrt{n}$ hold for all $n \geq c_2'$.

Thus:

$$10n + 5 + 5 \log_2 n \leq c_1 n^2 + c_1' \sqrt{n} \leq \max\{c_1, c_1'\} \cdot (n^2 + \sqrt{n})$$

holds for all $n \geq \max\{c_2, c_2'\}$.

Therefore, $10n + 5 + 5 \log_2 n = O(n^2 + \sqrt{n})$.
Direction 2: Inspecting $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

Since $10n + 5 = O(n^2)$, we have $\lim_{n \to \infty} \frac{10n + 5}{n^2} = c$, where c is some constant.

Similarly, $5 \log_2 n = O(\sqrt{n})$ indicates that $\lim_{n \to \infty} \frac{5 \log_2 n}{\sqrt{n}} = c'$, where c' is some constant.

Both of the above imply that:

$$\lim_{n \to \infty} \frac{10n + 5 + 5 \log_2 n}{n^2 + \sqrt{n}} = \lim_{n \to \infty} \frac{10n + 5}{n^2 + \sqrt{n}} + \lim_{n \to \infty} \frac{5 \log_2 n}{n^2 + \sqrt{n}}$$
$$\leq \lim_{n \to \infty} \frac{10n + 5}{n^2} + \lim_{n \to \infty} \frac{5 \log_2 n}{\sqrt{n}}$$
$$= c + c'.$$

Therefore, $10n + 5 + 5 \log_2 n = O(n^2 + \sqrt{n})$.
Exercise 4

Consider functions of n: $f_1(n)$, $f_2(n)$, $g_1(n)$ and $g_2(n)$ such that:

$$f_1(n) = O(g_1(n)) \text{ and } f_2(n) = O(g_2(n))$$

Prove $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.
Direction 1: Constant Finding

Since \(f_1(n) = O(g_1(n)) \), there exist constants \(c_1 \) and \(c_2 \) such that \(f_1(n) \leq c_1 \cdot g_1(n) \) holds for all \(n \geq c_2 \).

Similarly, \(f_2(n) = O(g_2(n)) \) implies the existence of constants \(c'_1 \) and \(c'_2 \) such that \(f_2(n) \leq c'_1 \cdot g_2(n) \) holds for all \(n \geq c'_2 \).

Thus:

\[
f_1(n) + f_2(n) \leq c_1 \cdot g_1(n) + c'_1 \cdot g_2(n) \leq \max\{c_1, c'_1\} \cdot (g_1(n) + g_2(n))
\]

for all \(n \geq \max\{c_2, c'_2\} \).

Therefore, \(f_1(n) + f_2(n) = O(g_1(n) + g_2(n)) \).
Direction 2: Inspecting $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

Since $f_1(n) = O(g_1(n))$, we have $\lim_{n \to \infty} \frac{f_1(n)}{g_1(n)} = c$ for some constant c.

Similarly, $f_2(n) = O(g_2(n))$ indicates $\lim_{n \to \infty} \frac{f_2(n)}{g_2(n)} = c'$ for some constant c'.

This leads to:

$$\lim_{n \to \infty} \frac{f_1(n) + f_2(n)}{g_1(n) + g_2(n)} = \lim_{n \to \infty} \frac{f_1(n)}{g_1(n) + g_2(n)} + \lim_{n \to \infty} \frac{f_2(n)}{g_1(n) + g_2(n)}$$

$$\leq \lim_{n \to \infty} \frac{f_1(n)}{g_1(n)} + \lim_{n \to \infty} \frac{f_2(n)}{g_2(n)}$$

$$\leq c + c'.$$

Therefore, $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.
Exercise 5

Given that $100n + \sqrt{n} + \log_2 n = \Theta(n)$, prove

$$\sqrt{100n + \sqrt{n} + \log_2 n} = \Theta(\sqrt{n}).$$
Exercise 5

Given that $100n + \sqrt{n} + \log_2 n = \Theta(n)$, prove $\sqrt{100n + \sqrt{n} + \log_2 n} = \Theta(\sqrt{n})$.

Big-Θ

Let $f(n)$ and $g(n)$ be two functions of n.

- If $f(n) = O(g(n))$ and $g(n) = O(f(n))$, then we define $f(n) = \Theta(g(n))$.
- There exist positive constants c_1, c_2 and c_3, such that $c_1 g(n) \leq f(n) \leq c_2 g(n)$, for all $n \geq c_3$.
Direction 1: Constant Finding

Since $100n + \sqrt{n} + \log_2 n = \Theta(n)$, there exist positive constants c_1, c_2 and c_3 such that $c_1 n \leq 100n + \sqrt{n} + \log_2 n \leq c_2 n$ holds for all $n \geq c_3$.

Thus, for all $n \geq c_3$,

$$\sqrt{c_1 n} \leq \sqrt{100n + \sqrt{n} + \log_2 n} \leq \sqrt{c_2 n} \Rightarrow \sqrt{c_1} \sqrt{n} \leq \sqrt{100n + \sqrt{n} + \log_2 n} \leq \sqrt{c_2} \sqrt{n} \Rightarrow c'_1 \sqrt{n} \leq \sqrt{100n + \sqrt{n} + \log_2 n} \leq c'_2 \sqrt{n}$$

Where $c'_1 = \sqrt{c_1}$, $c'_2 = \sqrt{c_2}$.

Therefore, $\sqrt{100n + \sqrt{n} + \log_2 n} = \Theta(\sqrt{n})$.

CSCI2100, The Chinese University of HongKong
Exercises on “the Growth of Functions”
Direction 2: Inspecting \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \)

Since \(100n + \sqrt{n} + \log_2 n = \Theta(n) \), we have \(\lim_{n \to \infty} \frac{100n + \sqrt{n} + \log_2 n}{n} = c_1 \) for some constant \(c_1 \), and \(\lim_{n \to \infty} \frac{n}{100n + \sqrt{n} + \log_2 n} = c_2 \) for some constant \(c_2 \).

So, on one hand:

\[
\lim_{n \to \infty} \sqrt{100n + \sqrt{n} + \log_2 n} = \lim_{n \to \infty} \sqrt{\frac{100n + \sqrt{n} + \log_2 n}{n}} = \sqrt{\lim_{n \to \infty} \frac{100n + \sqrt{n} + \log_2 n}{n}} = \sqrt{c_1}
\]

Therefore, \(\sqrt{100n + \sqrt{n} + \log_2 n} = O(\sqrt{n}) \).
Direction 2: Inspecting $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

Since $100n + \sqrt{n} + \log_2 n = \Theta(n)$, we have $\lim_{n \to \infty} \frac{100n + \sqrt{n} + \log_2 n}{n} = c_1$ for some constant c_1, and $\lim_{n \to \infty} \frac{n}{100n + \sqrt{n} + \log_2 n} = c_2$ for some constant c_2.

On the other hand:

$$
\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{100n + \sqrt{n} + \log_2 n}} = \lim_{n \to \infty} \frac{n}{\sqrt{100n + \sqrt{n} + \log_2 n}} = \sqrt{\lim_{n \to \infty} \frac{n}{100n + \sqrt{n} + \log_2 n}} = \sqrt{c_2}
$$

Therefore, $\sqrt{n} = O(\sqrt{100n + \sqrt{n} + \log_2 n})$.

Direction 2: Inspecting \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \)

Since \(100n + \sqrt{n} + \log_2 n = \Theta(n) \), we have \(\lim_{n \to \infty} \frac{100n + \sqrt{n} + \log_2 n}{n} = c_1 \) for some constant \(c_1 \), and \(\lim_{n \to \infty} \frac{n}{100n + \sqrt{n} + \log_2 n} = c_2 \) for some constant \(c_2 \).

Finally, we have:

\[
\sqrt{100n + \sqrt{n} + \log_2 n} = O(\sqrt{n})
\]

\[
\sqrt{n} = O(\sqrt{100n + \sqrt{n} + \log_2 n})
\]

Therefore, \(\sqrt{100n + \sqrt{n} + \log_2 n} = \Theta(\sqrt{n}) \).
This tutorial gives us some exercises about how to prove the "Big-O" relationship between two functions by using two different methods.

Following the definitions strictly will always lead us to the right proof.