Examples and Applications of Binary Search

CSCI2100 Tutorial 1
Hou Pong CHAN, Ken

Adapted from the slides of Tony Gong
In the Lectures

• Studies the binary search algorithm
• Solves the problem of determining if a particular value appears in a sorted list of integer or not
• Proves that the worst-case running time under the RAM model
 • \(O(\log_2 n) \)
Example 1

• Suppose we have the following sorted input set, where \(n = 8 \) and we are trying to find the value 13.
Example 1

• Initializing L to be 1 and R to n (in this case 8)
Example 1

• Since $R > L$
• Proceed by computing M
Example 1

• Compare v and the value indexed by M (13 and 8)
• $v >$ the value indexed by M
• Means that the target is in the right half of the sorted sequence

```
  2  3  5  8  13  21  34  55 ...
```

```
  n  v  L  M  R ...

  8  13  1  4  8 ...
```
Example 1

- Look at the right half of the sorted sequence
- Set L to be $M + 1$ (discard the left half)
- Recompute M
Example 1

• Compare \(v \) and the value indexed by \(M \) (13 and 21)
• \(v < \) the value indexed by \(M \)
• Means that the target is in the left half of the sorted sequence
Example 1

- Set R to be $M - 1$ (discard the right half)
- L and R converged, $L, M, R = 5$
- Only a single value for us to check
- We find 13, return “yes”
The Sum of Two Integers Problem

• Problem Input:
 • A sequence of \(n \) positive integers in strictly increasing order in memory at the cells numbered from 1 up to \(n \)
 • The value \(n \) has been placed in Register 1
 • A positive integer \(v \) has been placed in Register 2

• Goal:
 • Determine whether if there exist two integers \(x \) and \(y \) (not necessarily distinct) in the sorted sequence such that \(x + y = v \)
Example

- A “yes”-input with $n = 12$, $v = 30$
Example

- A “no”-input with $n = 12$, $v = 29$

\[
\begin{array}{|c|c|}
\hline
n & v \\
\hline
12 & 29 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
2 & 3 & 5 & 7 & 11 & 13 \\
\hline
17 & 19 & 23 & 29 & 31 & 37 \\
\hline
\end{array}
\]

...
A First Attempt

• Naïve algorithm:
 • Enumerate all possible pairs in the sorted sequence
 • Check if they sum to v
 • There are $\binom{n}{2} = \frac{n(n-1)}{2}$ possible pairs
 • Time complexity: $O(n^2)$

• Can we do better than this?

• Hint: Take advantage of the fact that the given sequence is sorted!
Binary Search the Answer

• Find x and y such that $x + y = v$
• Rearrange into $y = v - x$
• Rephrase the problem
 • Whether if such a y exists in the sequence for at least one of x in the sequence
• Solution:
 • For each x in the sequence:
 • Compute y as $v - x$
 • Use binary search to see if y exists in the sequence
The Repeated Binary Search Algorithm

• Pseudocode:

1. Let n be register 1 and v be register 2
2. register $i \leftarrow 1$, register $one \leftarrow 1$
3. while $i \leq n$
4. \hspace{1em} read into register x the memory cell at address i
5. \hspace{1em} $y \leftarrow v - x$
6. \hspace{1em} if $BinarySearch(y) =$ “yes”
7. \hspace{2em} return “yes”
7. \hspace{1em} $i \leftarrow i + one$ (effectively increasing i by 1)
8. return “no”
Time Complexity

• Worst case (when the output is “no”)
• This algorithm needs to run binary search n times
• Time complexity of binary search: $O(\log_2 n)$
• Time complexity of this algorithm: $O(n \log_2 n)$

• Can we do even better?
An Even Better Algorithm

- Utilize the fact that the sequence is sorted
- Can find the solution by considering each term only once
- That means, time complexity is $O(n)$
An Even Better Algorithm

• Conceptually we have two pointers (orange)
• Begin by pointing at the start and the end resp.
• Summed the two numbers being pointed to
• We get 39, which is greater than the desired value, 30
An Even Better Algorithm

- \(2 + 37 > 30\) tell us that:
 - 37 will never appear in a valid solution, because 2 is the smallest term in the sequence and the sum is already greater than the desired value.
 - Should move the right pointer towards the left, since this will decrease the overall value of the sum.
An Even Better Algorithm

• $2 + 31 > 30$

• Move the right pointer towards the left
An Even Better Algorithm

- $2 + 29 > 30$
- Move the right pointer towards the left
An Even Better Algorithm

- $2 + 23 < 30$ tells us that
 - 2 never appears in a solution because 23 is the largest value that we have, and that the solution is still too small, so 2 plus any other number in the sequence would also be too small
 - Should move the left pointer towards the right to increase our “estimate”
An Even Better Algorithm
An Even Better Algorithm

• Now, $7 + 23 = 30$
• We find x and y in the sequence such that $x + y = \nu$
• Return “yes”
An Even Better Algorithm

• Think of x as the element being pointed to by the left pointer and y as the element being pointed to by the right pointer:
 • If $x + y = v$, we are done
 • If $x + y > v$, we need to make the sum smaller, so move y towards the left
 • If $x + y < v$, we need to make the sum bigger, so move x towards the right
An Even Better Algorithm

• Algorithm:
 1. let \(n \) be register 1, and \(v \) be register 2
 2. register \(left \leftarrow 1 \), \(right \leftarrow n \)
 3. while \(left \leq right \)
 4. read into register \(x \) the memory cell at address \(left \)
 5. read into register \(y \) the memory cell at address \(right \)
 6. if \(x + y = v \) then
 7. return “yes”
 8. else if \(x + y > v \) then
 9. \(right \leftarrow right - 1 \)
 10. else
 11. \(left \leftarrow left + 1 \)
 12. return “no”

• Time complexity: \(O(n) \)
Recap

• Review the binary search algorithm
• Look at a problem that can be solved by repeated application of binary search (although there exists a better algorithm)
• You are encouraged to run this algorithm on some input sets and convince yourself
• https://leetcode.com/problems/two-sum/description/