Problem 1. Let \(S = \{75, 123, 65, 9, 23, 67, 32, 12, 93\} \). Consider a hash function \(h(k) = 1 + ((2k + 17) \mod m) \), where \(m = 5 \). Show the resulting hash table. Also, explain how to use the hash table to answer a dictionary search query with value 34.

Problem 2. Let \(S_1 \) and \(S_2 \) be two sets of integers, such that \(|S_1| = |S_2| = n \). Give an algorithm to report all the integers in \(S_1 \cap S_2 \) in \(O(n) \) expected time.

Problem 3. Let \(S_1 \) and \(S_2 \) be two sets of integers, such that \(|S_1| = |S_2| = n \). All the integers are obtained from the domain \([1, 20n]\). Give an algorithm to report all the integers in \(S_1 \cap S_2 \) in \(O(n) \) worst-case time. (Hint: counting sort).

Problem 4. Let \(S \) be a perhaps multi-set of \(n \) integers. Give an algorithm to determine whether \(S \) has two identical integers. Your algorithm should terminate in \(O(n) \) expected time.

Problem 5. Let \(S \) be a perhaps multi-set of \(n \) integers. Give an algorithm to determine whether \(S \) has \(k \) identical integers. Your algorithm should terminate in \(O(n) \) expected time, regardless of \(k \). For example, suppose that \(S = \{75, 123, 65, 9, 9, 32, 9, 93\} \). Then the answer is yes if \(k \leq 3 \), but no if \(k \geq 4 \).