Problem 1. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(2) &= 2 \\
 f(n) &= 3 + f(n - 2).
\end{align*}
\]

Prove \(f(n) = O(n) \).

Problem 2. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(2) &= 2 \\
 f(n) &= \frac{n}{10} + f(n - 2).
\end{align*}
\]

Prove \(f(n) = O(n^2) \).

Problem 3. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 5n + f(\lceil n/1.01 \rceil).
\end{align*}
\]

Prove \(f(n) = O(n) \). Recall that \(\lceil x \rceil \) is the ceiling operator that returns the smallest integer at least \(x \).

Problem 4. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 10 + 2 \cdot f(\lceil n/8 \rceil).
\end{align*}
\]

Prove \(f(n) = O(n^{1/3}) \).

Problem 5. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= f(\lceil n/4 \rceil) + f(\lceil n/2 \rceil) + n.
\end{align*}
\]

Prove \(f(n) = O(n) \).

Problem 6. Consider a set \(S \) of \(n \) integers that are stored in an array (not necessarily sorted).
Let \(e \) and \(e' \) be two integers in \(S \) such that \(e \) is positioned before \(e' \). We call the pair \((e, e') \) an inversion in \(S \) if \(e > e' \). Write an algorithm to report all the inversions in \(S \). Your algorithm must terminate in \(O(n^2) \) time.

For example, if the array stores the sequence \((10, 15, 7, 12)\), then your algorithm should return \((10, 7), (15, 7)\), and \((15, 12)\).
Investigation Problem: k-Selection. Let S be a set of n integers given in an array, and k be an arbitrary integer in $[1, n]$. Design an algorithm to find the k-th smallest integer in S. Note that the array is not necessarily sorted. Try to reduce the time complexity of your algorithm as much as possible.