Problem 1. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(2) &= 2 \\
 f(n) &= 3 + f(n - 2).
\end{align*}
\]

Prove $f(n) = O(n)$.

Problem 2. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(2) &= 2 \\
 f(n) &= n/10 + f(n - 2).
\end{align*}
\]

Prove $f(n) = O(n^2)$.

Problem 3. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 5n + f([n/1.01]).
\end{align*}
\]

Prove $f(n) = O(n)$. Recall that $[x]$ is the ceiling operator that returns the smallest integer at least x.

Problem 4. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 10 + 2 \cdot f([n/8]).
\end{align*}
\]

Prove $f(n) = O(n^{1/3})$.

Problem 5. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= f([n/4]) + f([n/2]) + n.
\end{align*}
\]

Prove $f(n) = O(n)$.

Problem 6. Consider a set S of n integers that are stored in an array (not necessarily sorted). Let e and e' be two integers in S such that e is positioned before e'. We call the pair (e, e') an inversion in S if $e > e'$. Write an algorithm to report all the inversions in S. Your algorithm must terminate in $O(n^2)$ time.

For example, if the array stores the sequence $(10, 15, 7, 12)$, then your algorithm should return $(10, 7)$, $(15, 7)$, and $(15, 12)$.