Problem 1. Let S_1 and S_2 be two sets of integers (they are not necessarily disjoint). We know that $|S_1| = |S_2| = n$ (i.e., each set has n integers). Design an algorithm to report the distinct integers in $S_1 \cup S_2$ using $O(n)$ expected time. For example, if $S_1 = \{1, 5, 6, 9, 10\}$ and $S_2 = \{5, 7, 10, 13, 15\}$, you should output: 1, 5, 6, 7, 9, 10, 13, 15.

Problem 2 (No Single Hash Function Works for All Sets). Let U and m be integers satisfying $U \geq m^2$. Fix a hash function h from $[U]$ to $[m]$, where $[x]$ represents the set of integers $\{1, 2, ..., x\}$. Prove that there must be a set $S \subseteq [U]$ such that (i) $|S| = m$, and (ii) h maps all the elements of S to the same hash value.

Problem 3*. Let S be a multi-set of n integers. Define the frequency of an integer x as the number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct integers in S by frequency. Your algorithm must terminate in $O(n)$ expected time. For example, suppose that $S = \{75, 123, 65, 75, 9, 9, 65, 9, 93\}$. Then you should output $(123, 93, 65, 75, 9)$. Note that if two integers have the same frequency, their relative ordering is unimportant. For example, $(93, 123, 75, 65, 9)$ is another legal output.

Problem 4*. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the value. Preprocess S into a data structure so that the following queries can be answered efficiently. Given a pair (q_k, q_v), a query

- Returns nothing if S contains no pair with key q_k;
- Otherwise, it returns the number of pairs $(k, v) \in S$ such that $k = q_k$ and $v \leq q_v$.

Define the frequency of a key k as the number of pairs in S with key k. Define f as the maximum frequency of all keys. Your structure must use $O(n)$ space, and answer a query in $O(\log f)$ expected time. Furthermore, it must be possible to construct the structure $O(n \log f)$ time.

For example, suppose that $S = \{(75,35), (123,6), (65,32), (75,22), (9,1), (9,10), (65,74), (9,8), (93,23)\}$. Then, given $(63,33)$, the query returns nothing. Given $(65,33)$, the query returns 1. Given $(65,2)$, the query returns 0. In this example, $f = 3$.

Problem 5** (Dynamic Hashing). Consider the following dynamic dictionary search problem. Let S be a dynamic set of integers. At the beginning, S is empty. We want to support the following operations:

- **Insert**(e): Adds an integer e to S.
- **Delete**(e): Removes an integer e from S.
- **Query**(q): Determines whether q belongs to the current set.

Design a data structure with the following guarantees:
• At all times, the space consumption is $O(|S|)$, i.e., linear to the number of elements currently in S.

• For any sequence of n operations (each being an insert, delete, or query), your algorithm must use $O(n)$ expected time in total.