CSCI2100: Regular Exercise Set 7
Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S_1 and S_2 be two sets of integers (they are not necessarily disjoint). We know that $|S_1| = |S_2| = n$ (i.e., each set has n integers). Design an algorithm to report the distinct integers in $S_1 \cup S_2$ using $O(n)$ expected time. For example, if $S_1 = \{1, 5, 6, 9, 10\}$ and $S_2 = \{5, 7, 10, 13, 15\}$, you should output: 1, 5, 6, 7, 9, 10, 13, 15.

Solution. First, output everything in S_1. Then, create a hash table on S_1 in $O(|S_1|)$ time. For every value $x \in S_2$, probe the hash table to see if $x \in S_1$. If not, output x. Each probe takes $O(1)$ expected time. Hence, the total cost of all the probes is $O(|S_2|)$ expected. The overall cost is therefore $O(n)$ expected.

Problem 2 (No Single Hash Function Works for All Sets). Let U and m be integers satisfying $U \geq m^2$. Fix a hash function h from $[U]$ to $[m]$, where $[x]$ represents the set of integers $\{1, 2, \ldots, x\}$. Prove that there must be a set $S \subseteq [U]$ such that (i) $|S| = m$, and (ii) h maps all the elements of S to the same hash value.

Solution. For each $i \in [m]$, define $S_i = \{x \in [U] \mid h(x) = i\}$. Since $\sum_{i=1}^m |S_i| = U \geq m^2$, there is at least one $j \in [m]$ such that $|S_j| \geq U/m \geq m$. Construct a set S to include m arbitrary distinct elements from S_j. This S fulfills our purposes.

Problem 3*. Let S be a multi-set of n integers. Define the frequency of an integer x as the number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct integers in S by frequency. Your algorithm must terminate in $O(n)$ expected time. For example, suppose that $S = \{75, 123, 65, 75, 9, 9, 65, 9, 93\}$. Then you should output $(123, 93, 65, 75, 9)$. Note that if two integers have the same frequency, their relative ordering is unimportant. For example, $(93, 123, 75, 65, 9)$ is another legal output.

Solution. We can collect the set T of distinct integers in S by hashing as follows. For every integer $x \in S$, check whether the hash table has already contained a copy of x. This takes $O(1)$ in expectation. If so, ignore x; otherwise, insert x into the hash table in $O(1)$ time. The collection requires $O(n)$ time overall.

We can then obtain the frequency of every distinct integer as follows. For each integer $x \in S$, find its copy in the hash table, and increase the counter of the copy by 1 (the counter initially set to 0). This takes $O(1)$ time per integer, and hence, $O(n)$ time overall.

Now we simply sort all the distinct integers by frequency. Note that the frequencies are in the domain from 1 to n. Hence, counting sort gets this done in $O(n)$ time.

Problem 4*. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the value. Preprocess S into a data structure so that the following queries can be answered efficiently. Given a pair (q_k, q_v), a query

- Returns nothing if S contains no pair with key q_k;
• Otherwise, it returns the number of pairs \((k, v) \in S\) such that \(k = q_k\) and \(v \leq q_v\).

Define the frequency of a key \(k\) as the number of pairs in \(S\) with key \(k\). Define \(f\) as the maximum frequency of all keys. Your structure must use \(O(n)\) space, and answer a query in \(O(\log f)\) expected time. Furthermore, it must be possible to construct the structure \(O(n \log f)\) time.

For example, suppose that \(S = \{(75,35),(123,6),(65,32),(75,22),(9,1),(9,10),(65,74),(9,8),(93,23)\}\). Then, given \((63,33)\), the query returns nothing. Given \((65,33)\), the query returns 1. Given \((65,2)\), the query returns 0. In this example, \(f = 3\).

Solution. Collect the set \(T\) of distinct keys in \(S\), and obtain their frequencies in \(O(n)\) time (see the solution of Problem 2). Create a hash table on \(T\) in \(O(n)\) time. For every key \(k \in T\), create an array \(A_k\) whose length is equal to the frequency of \(k\). Store in \(A_k\) all the values \(v\) such that \((k,v)\) is a pair in \(S\). Sort \(A_k\) in ascending order. The sorting takes \(O(|A_k| \log |A_k|) = O(|A_k| \log f)\) time. Store the beginning address of \(A_k\) at the copy of \(k\) in the hash table. The overall construction time is \(O(\sum_k |A_k| \log f) = O(n \log f)\). The space consumption is obviously \(O(n)\).

To answer a query \((q_k,q_v)\), first probe the hash table to see if \(q_k \in T\). If not, terminate the algorithm. Otherwise, perform binary search in \(A_{q_k}\) in \(O(\log f)\) time. The overall query time is \(O(1)\) expected plus \(O(\log f)\) worst case, which is \(O(\log f)\) expected.

Problem 5 (Dynamic Hashing). Consider the following dynamic dictionary search problem. Let \(S\) be a dynamic set of integers. At the beginning, \(S\) is empty. We want to support the following operations:

• **Insert** \((e)\): Adds an integer \(e\) to \(S\).

• **Delete** \((e)\): Removes an integer \(e\) from \(S\).

• **Query** \((q)\): Determines whether \(q\) belongs to the current set.

Design a data structure with the following guarantees:

• At all times, the space consumption is \(O(|S|)\), i.e., linear to the number of elements currently in \(S\).

• For any sequence of \(n\) operations (each being an **insert**, **delete**, or **query**), your algorithm must use \(O(n)\) expected time in total.

Solution. If \(|S| \leq 4\), we simply store the entire \(|S|\) in an array of length 4. If \(|S| > 4\), we will maintain the hash function \(h\) whose output domain is \([m]\), with \(m\) being a power of 2 and satisfying \(|S| \leq m \leq 4|S|\). Accordingly, we also maintain a hash table \(T\) computed using \(h\). **Insert** \((e)\) is processed by inserting \(e\) into the linked list in \(T\) corresponding to the hash value \(h(e)\). Similarly, **delete** \((e)\) is processed by scanning the entire linked list of \(h(e)\), and removing \(e\) from there.

If after an insertion \(|S|\) reaches \(m\), we double \(m\), and reconstruct the hash table by randomly selecting a new hash function \(h\) whose output domain is \([m]\) (note that the domain size has doubled). If after a deletion \(|S|\) equals \(m/4\), we halve \(m\), and reconstruct the hash table by randomly selecting a new hash function \(h\) whose output domain is \([m]\). The amortized insertion/deletion cost is \(O(1)\) by the same analysis we did for dynamic arrays.

A query is answered in the same way as discussed in the class.
An insertion obviously is handled in $O(1)$ time. The expected running time of a deletion is the same as that of a query, which is $O(1)$ when we choose h from universal family explained in the class. The space consumption is $O(|S|)$ at all times.