Problem 1. Prove $\log_2(n!) = \Theta(n \log n)$.

Problem 2. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 2 + f(\lceil n/10 \rceil).
\end{align*}
\]
Prove $f(n) = O(\log n)$. Recall that $\lceil x \rceil$ is the ceiling operator that returns the smallest integer at least x.

If necessary, you can use without a proof the fact that $f(n)$ is monotone, namely, $f(n_1) \leq f(n_2)$ for any $n_1 < n_2$.

Problem 3. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 2 + f(\lceil 3n/10 \rceil).
\end{align*}
\]
Prove $f(n) = O(\log n)$. Recall that $\lceil x \rceil$ is the ceiling operator that returns the smallest integer at least x.

Problem 4. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
 f(1) &= 1 \\
 f(n) &= 2n + 4f(\lceil n/4 \rceil).
\end{align*}
\]
Prove $f(n) = O(n \log n)$. If necessary, you can use without a proof the fact that $f(n)$ is monotone.

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:

1. If $n = 1$, nothing to sort; return.

Prove that the algorithm terminates in $O(n^2)$ time.

As an example, support that A contains the sequence of integers $(10, 15, 8, 29, 13)$. After Step 2 has been executed once, array A becomes $(10, 8, 15, 13, 29)$.

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for sorting an array A of n elements (we will use the notation $A[i..j]$ to represent the part of the array from $A[i]$ to $A[j]$):
• If $n = 1$ then return immediately.
• Otherwise set $k = \lceil n/3 \rceil$.
• Recursively sort $A[1..k]$ and $A[k+1..n]$, respectively.
• Merge $A[1..k]$ and $A[k+1..n]$ into one sorted array.

Prove that this algorithm runs in $O(n \log n)$ time.