Problem 1. Prove $\log_2(n!) = \Theta(n \log n)$.

Solution. Let us prove first $\log_2(n!) = O(n \log n)$:

$$\log_2(n!) = \log_2(\Pi_{i=1}^{n} i) \leq \log_2 n^n = n \log_2 n = O(n \log n).$$

Now we prove $\log_2(n!) = \Omega(n \log n)$:

$$\log_2(n!) = \log_2(\Pi_{i=1}^{n} i) \geq \log_2(\Pi_{i=n/2}^{n} i) \geq \log_2(n/2)^{n/2} = (n/2) \log_2(n/2) = \Omega(n \log n).$$

This completes the proof.

Problem 2. Let $f(n)$ be a function of positive integer n. We know:

$$f(1) = 1$$

$$f(n) = 2 + f(\lceil n/10 \rceil).$$

Prove $f(n) = O(\log n)$. Recall that $\lceil x \rceil$ is the ceiling operator that returns the smallest integer at least x.

If necessary, you can use without a proof the fact that $f(n)$ is monotone, namely, $f(n_1) \leq f(n_2)$ for any $n_1 < n_2$.

Solution 1 (Expansion). Consider first n being a power of 10.

$$f(n) \leq 2 + f(n/10) \leq 2 + 2 + f(n/10^2) \leq 2 + 2 + 2 + f(n/10^3) \leq \ldots \leq 2 \cdot \log_{10} n + f(1) = 2 \cdot \log_{10} n + 1 = O(\log n).$$

Now consider n that is not a power of 10. Let n' be the smallest power of 10 that is greater
than \(n \). We have:

\[
\begin{align*}
f(n) & \leq f(n') \\
& \leq 2 \log_{10} n' + 1 \\
& \leq 2 \log_{10}(10n) + 1 \\
& \leq O(\log n).
\end{align*}
\]

Solution 2 (Master Theorem). Let \(\alpha, \beta, \) and \(\gamma \) be as defined in the Master Theorem (see the tutorial slides of Week 4). Thus, we have \(\alpha = 1, \beta = 10, \) and \(\gamma = 0 \). Since \(\log_\beta \alpha = \log_{10} 1 = 0 = \gamma \), by the Master Theorem, we know that \(f(n) = O(n^\gamma \log n) = O(\log n) \).

Problem 3. Let \(f(n) \) be a function of positive integer \(n \). We know:

\[
\begin{align*}
f(1) & = 1 \\
f(n) & = 2 + f(\lceil 3n/10 \rceil).
\end{align*}
\]

Prove \(f(n) = O(\log n) \). Recall that \(\lceil x \rceil \) is the ceiling operator that returns the smallest integer at least \(x \).

Solution 1 (Expansion).

\[
\begin{align*}
f(n) & = 2 + f(n_1) \quad (\text{define } n_1 = \lceil (3/10)n \rceil) \\
f(n) & = 2 + 2 + f(n_2) \quad (\text{define } n_2 = \lceil (3/10)n_1 \rceil) \\
f(n) & = 2 + 2 + 2 + f(n_3) \quad (\text{define } n_3 = \lceil (3/10)n_2 \rceil) \\
& \quad \vdots \\
f(n) & = \underbrace{2 + 2 + \ldots + 2}_h f(n_h) \quad (\text{define } n_h = \lceil (3/10)n_{h-1} \rceil) \\
& = 2h + f(n_h).
\end{align*}
\]

So it remains to analyze the value of \(h \) that makes \(n_h \) small enough. Note that we do *not* need to solve the precise value of \(h \); it suffices to prove an upper bound for \(h \). For this purpose, we reason as follows. First, notice that

\[
\lceil 3n/10 \rceil \leq (4n/10)
\]

when \(n \geq 10 \) (prove this yourself).

Let us set \(h \) to be the smallest integer such that \(n_h < 10 \) (this implies that \(n_{h-1} \geq 10 \) and \(n_h \geq (4/10)n_{h-1} \geq 4 \)). We have:

\[
\begin{align*}
n_1 & \leq (4/10)n \\
n_2 & = \lceil (3/10)n_1 \rceil \leq (4/10)n_1 \leq (4/10)^2 n \\
n_3 & \leq (4/10)^3 n \\
& \quad \vdots \\
n_h & \leq (4/10)^h n
\end{align*}
\]

Therefore, the value of \(h \) cannot exceed \(\log_{10} n \) (otherwise, \((4/10)^h \cdot n < 1 \), making \(n_h < 1 \), which contradicts the fact that \(n_h \geq 4 \)). Plugging this into \((1) \) gives:

\[
f(n) \leq 2 \log_{10} n + f(10) = O(\log n). \quad (\text{think: why?})
\]
Solution 2 (Master Theorem). Let $\alpha, \beta,$ and γ be as defined in the Master Theorem. Thus, we have $\alpha = 1, \beta = 10/3,$ and $\gamma = 0.$ Since $\log_\beta \alpha = \log_{10/3} 1 = 0 = \gamma,$ by the Master Theorem, we know that $f(n) = O(n^\gamma \log n) = O(\log n).

Problem 4. Let $f(n)$ be a function of positive integer $n.$ We know:

$$f(1) = 1$$ $$f(n) = 2n + 4f(\lceil n/4 \rceil).$$

Prove $f(n) = O(n \log n).$ If necessary, you can use without a proof the fact that $f(n)$ is monotone.

Solution 1 (Expansion). Consider first n being a power of 4.

$$f(n) \leq 2n + 4f(n/4)$$ $$\leq 2n + 4(2n/4 + 4f(n/4^2))$$ $$\leq 2n + 2n + 4^2 f(n/4^2)$$ $$= 2 \cdot 2n + 4^2 f(n/4^2)$$ $$\leq 2 \cdot 2n + 4^2 \cdot (2(n/4^2) + 4f(n/4^3))$$ $$= 3 \cdot 2n + 4^3 f(n/4^3)$$ $$...$$ $$= (\log_4 n) \cdot 2n + n \cdot f(1)$$ $$= (\log_4 n) \cdot 2n + n = O(n \log n).$$

Now consider that n is not a power of 4. Let n' be the smallest power of 4 that is greater than $n.$ This implies that $n' < 4n.$ We have:

$$f(n) \leq f(n')$$ $$\leq (\log_4 n') \cdot 2n' + n'$$ $$< (\log_4 (4n)) \cdot 8n + 4n = O(n \log n).$$

Solution 2 (Master Theorem). Let $\alpha, \beta,$ and γ be as defined in the Master Theorem. Thus, we have $\alpha = 4, \beta = 4,$ and $\gamma = 1.$ Since $\log_\beta \alpha = \log_4 4 = 1 = \gamma,$ by the Master Theorem, we know that $f(n) = O(n^\gamma \log n) = O(n \log n).

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:

1. If $n = 1,$ nothing to sort; return.

2. Otherwise, do the following in ascending order of $i \in [1, n - 1]:$ if $A[i] > A[i + 1],$ swap the integers in $A[i]$ and $A[i + 1].$

Prove that the algorithm terminates in $O(n^2)$ time.
As an example, support that A contains the sequence of integers $(10, 15, 8, 29, 13)$. After Step 2 has been executed once, array A becomes $(10, 8, 15, 13, 29)$.

Solution 1. Notice that Step 2 is executed $n - 1$ times in total. At its j-th ($1 \leq j \leq n - 1$) execution, it incurs at most $c \cdot j$ time for some constant $c > 0$. Hence, its worst-case time is no more than

$$c \sum_{j=1}^{n-1} j = cn(n - 1)/2 < cn^2 = O(n^2).$$

Solution 2. Let $f(n)$ be the worst-case running time of bubble sort when the array has n elements. From the base case (Step 1), we know:

$$f(1) \leq c_1$$

for some constant c_1. From the inductive case (Steps 2-3), we know:

$$f(n) \leq c_2n + f(n - 1)$$

for some constant c_2. Solving the recurrence (by the expansion method) gives $f(n) = O(n^2)$.

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for sorting an array A of n elements (we will use the notation $A[i..j]$ to represent the part of the array from $A[i]$ to $A[j]$):

- If $n = 1$ then return immediately.
- Otherwise set $k = \lceil n/3 \rceil$.
- Recursively sort $A[1..k]$ and $A[k+1..n]$, respectively.
- Merge $A[1..k]$ and $A[k+1..n]$ into one sorted array.

Prove that this algorithm runs in $O(n \log n)$ time.

Solution. Let $f(n)$ be the worst case time of the algorithm on an array of size n. We have: the following recurrence:

$$f(1) \leq \alpha$$

$$f(n) \leq f(\lceil n/3 \rceil) + f(\lceil 2n/3 \rceil) + \beta \cdot n$$

where $\alpha > 0$ and $\beta > 0$ are constants. Next we will prove that $f(n) = O(n \log n)$ using the substitution method. To simplify discussion, let us get rid of α by defining: $g(n) = f(n) - \alpha$. We thus have:

$$g(1) \leq 0$$

$$g(n) \leq g(\lceil n/3 \rceil) + g(\lceil 2n/3 \rceil) + \alpha + \beta \cdot n$$

$$\leq g(\lceil n/3 \rceil) + g(\lceil 2n/3 \rceil) + (\alpha + \beta) \cdot n$$

We will prove instead that $g(n) = O(n \log n)$ which will imply that $g(n) = O(n \log n)$.

To further simplify discussion, let us define $h(n) = \frac{1}{\alpha + \beta} \cdot g(n)$. Hence, we have

\begin{align*}
h(1) & \leq 0 \\
h(n) & \leq h([n/3]) + h([2n/3]) + n
\end{align*}

We will prove that $h(n) = O(n \log n)$ which will imply that $g(n) = O(n \log n)$.

Assume that $h(n) \leq cn \log_2 n$ for some constant $c > 0$. It is easy to verify that this is true for $h(1), h(2), ..., h(32)$ as long as c is greater than a certain constant, say, β.

Suppose that $h(n) \leq cn \log_2 n$ for all $n \leq k - 1$ and an arbitrary integer $k > 32$. Next, we will work out the condition for this to hold also on $n = k$ as well. From (4), we have:

\begin{align*}
h(k) & \leq h([k/3]) + h([2k/3]) + k \\
 & \leq c[k/3] \log_2 [k/3] + c[2k/3] \log_2 [2k/3] + k \\
 & \leq c(1 + k/3) \log_2 (1 + k/3) + c(1 + 2k/3) \log_2 (1 + 2k/3) + k
\end{align*}

For $k > 32$, it always holds that $1 + k/3 \leq k/2$ and $1 + 2k/3 \leq k$. Hence we have from (5):

\begin{align*}
h(k) & \leq c(1 + k/3) \log_2 (k/2) + c(1 + 2k/3) \log_2 k + k \\
 & = c(1 + k/3)(\log_2 k - 1) + c(1 + 2k/3) \log_2 k + k \\
 & = ck \log_2 k + c \log_2 k - c - ck/3 + c \log_2 k + k \\
 & \leq ck \log_2 k + 2c \log_2 k - ck/3 + k
\end{align*}

We want the above to be no greater than $ck \log_2 k$ for our argument to work. This is true as long as

\begin{align*}
2c \log_2 k - ck/3 + k & \leq 0 \\
\iff 2c \log_2 k & \leq (c/3 - 1)k.
\end{align*}

The above holds for any $k > 32$ as long as $c \geq 48$.

We can therefore set $c = \max\{48, \beta\}$, and assert that $h(n) \leq cn \log_2 n$.

\begin{align*}

\end{align*}