Problem 1 (Correctness of the White Path Theorem) Consider performing DFS on a directed graph $G = (V,E)$. Then, both of the following statements are true:

- Suppose that when a vertex u is discovered, there is still a white path from u to a vertex v (namely, we can hop from u to v while stepping on only white vertices). Then, v must be a descendant of u in the DFS forest.

- Conversely, if v is a descendant of u in the DFS forest, then there must be a white path from u to v at the moment when u is discovered.

Solution.

Proof of the First Statement. Let π be the path from u to v. We will prove that all the vertices on π must be descendants of u in the DFS forest. Suppose that this is not true. Let v' be the first vertex on π—in the order from u to v—that is not a descendant of u. Clearly, $v' \neq u$. Let u' be the vertex that precedes v' on π.

Consider the moment before u' turns black. As u' is a descendant of u in the DFS forest, we know that u is in the stack currently. The color of v' cannot be white—otherwise, DFS must now push v' into the stack, which is a contradiction of the fact that u' is turning black. On the other hand, if v' is either gray or black, it means that v must have been pushed into the stack while u still remains in the stack. This contradicts the fact that v is not a descendant of u.

Proof of the Second Statement. As v is a descendant of u, there is a moment in DFS when u and v were both in the stack with v being the top of the stack. It thus follows that there is a white path from u to v when u is discovered.

Problem 2 (DFS on Undirected Graphs). Let $G = (V,E)$ be an undirected graph. Consider the execution of DFS on G. The algorithm runs in exactly the same way as DFS on a directed graph. The only difference is that, a vertex u is popped out of the stack, only if none of its neighbors (instead of out-neighbors) is still white. Give a possible DFS tree produced if we (i) start DFS on a in the following graph, and (ii) follow the convention that we explore the neighbors of a vertex in alphabetic order.

Solution.
Problem 3 (No Cross Edges in Undirected DFS). Let $G = (V, E)$ be an undirected graph. Consider the DFS forest produced by running DFS on G (assuming arbitrary starting and re-starting vertices). Let $\{u, v\}$ be an edge in G (note that we use the notation $\{u, v\}$, instead of (u, v), to emphasize that the edge has no directions). Prove: either u is an ancestor of v, or v is an ancestor of u.

Remark: Because of this lemma, we can classify each edge $\{u, v\}$ in G as follows:

- **Tree edge:** if u is the parent of v or v is the parent of u.
- **Back edge:** otherwise.

Solution. The white path theorem—as stated in Problem 1—still holds for undirected DFS (the same proof applies here as well). Between u and v, let u be the vertex discovered first. Then, the white path theorem says that v must be a descendant of u.

Problem 4 (Undirected Cycle Detection). Let $G = (V, E)$ be an undirected graph. A cycle is a sequence of edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{t-1}, v_t\}$ where $v_t = v_1$. Adapt DFS to design an algorithm to detect whether G has a cycle in $O(|V| + |E|)$ time.

Solution. Perform DFS on G. Declare cycle presence if and only if a back edge is found. For example, in the Solution of Problem 2, there is such an edge $\{a, d\}$, which implies a cycle.

Problem 5** (Articulation Vertex). Let $G = (V, E)$ be an undirected graph that is connected (i.e., there is a path between any two distinct vertices). A vertex $u \in V$ is called an articulation vertex if the following is true: G becomes disconnected after removing u and all the edges of u. For example, in the figure below, vertex g is an articulation, and so is d. No other vertices are articulation vertices.

Consider any DFS tree on G. Prove:

- If a vertex u is a leaf in the DFS tree, it cannot be an articulation vertex.
- Let u a vertex that is neither a leaf in the DFS tree nor the root. It is an articulation vertex if and only if the following is true:
There is at least one child \(v \) of \(u \), such that no back edge connects a descendant of \(v \) to a proper ancestor of \(u \).

- Let \(u \) be the root of a DFS tree. It is an articulation vertex if and only if it has at least two child nodes in the DFS tree.

Solution.

Proof of the First Bullet.

Suppose that \(u \) is an articulation vertex. Let \(s \) be the starting vertex of the DFS. Then there must be a vertex \(u' \) such that all the paths from \(s \) to \(u' \) must go by way of \(u \). This implies that, when \(v \) is discovered by DFS, there must be a white path from \(u \) to \(u' \). The white path theorem then says that \(u' \) must be a descendant of \(u \), contradicting the fact that \(u \) is a leaf.

Proof of the Second Bullet.

Only-if direction. Imagine removing \(u \) from \(G \), which should disconnect \(G \). Let \(C_1, C_2, ..., C_t \) for some \(t \geq 2 \) be the connected components (CCs) of the resulting graph (recall that a CC is a set of vertices that are reachable from each other). Without loss of generality, assume that \(s \) belongs to \(C_1 \). Consider the moment right before the first vertex \(v \) in \(C_2 \) is discovered. It must be a child of \(u \) in the DFS tree (because any path from \(s \) to \(u \) must cross the edge \(\{u, v\} \)). At this moment, all the vertices in \(C_2 \) must be white; and they are the only vertices that \(v \) can reach via white paths. Hence, all the vertices of \(C_2 \) must be the only descendants of \(v \). It thus follows that there can be no back edge connecting a descendant of \(v \) to a proper ancestor of \(u \).

If direction. We will prove that, after \(u \) is removed from \(G \), \(s \) can no longer reach \(v \), which thus indicates that \(u \) is an articulation vertex. Suppose, on the contrary, that \(u \) can still access \(v \) by a path \(\pi \) (that does not contain \(u \)). Denote the vertices on \(\pi \) as \(v_1, v_2, ..., v_x \) with \(v_1 = s \) and \(v_x = v \). Let \(v_i \) (for some \(i \in [1, x] \)) be the last vertex on \(\pi \) that is an ancestor of \(u \). We will prove that \(v_{i+1} \) must be a descendant of \(v \), making \(\{v_i, v_{i+1}\} \) a back edge that connects a descendant of \(v \) to a proper ancestor of \(u \), which contradicts the fact that no such back edges exist.

Consider the moment right before the discovery of \(v \). We argue that the colors of \(v_{i+1}, v_{i+2}, ..., v_{x-1} \) must all be white at this moment:

- First, none of them can be gray—otherwise, such a vertex must be an ancestor of \(u \) (because \(u \) is the parent of \(v \)), contradicting the definition of \(v_i \).

- If \(v_{i+1} \) is black, it means that \(v_{i+1} \) was discovered before \(v \). Furthermore, when \(v_{i+1} \) turned black, \(v_{i+2} \) cannot be white (otherwise, DFS would have crossed the edge \(\{v_{i+1}, v_{i+2}\} \) to push \(v_{i+2} \) into the stack). Thus, at this moment, \(v_{i+2} \) must be black (as mentioned, \(v_{i+2} \) cannot be gray currently). Following the same argument, we obtain that \(v_{i+3}, v_{i+4}, ..., v_x \) must all be black at the moment. However, this contradicts the fact that \(v_x = v \) is white.

- The same argument proves that none of \(v_{i+2}, v_{i+3}, ..., v_{x-1} \) can be black.

Therefore, all of \(v_{i+1}, v_{i+2}, ..., v_{x-1} \) must be descendants of \(v \).

Proof of the Third Bullet.

Only-if direction. Vertex \(u \) is the starting vertex of DFS. Imagine removing \(u \) from \(G \), which should disconnect \(G \) into CCs \(C_1, C_2, ..., C_t \) for some \(t \geq 2 \). Let \(v \) be the second vertex discovered by DFS (i.e., right after \(u \)). Without loss of generality, suppose that \(v \in C_1 \). Then, when \(v \) is discovered,
there is no white path from \(v\) to any vertex in \(C_2\). Hence, none of the vertices in \(C_2\) can be descendants of \(v\), implying that \(u\) must have another child.

If direction. Let \(v\) be the second vertex discovered by DFS (i.e., right after \(u\)). Let \(v'\) any other child of \(u\) in the DFS tree. We will prove that any path from \(v\) to \(v'\) must go through \(u\), which indicates that \(u\) is an articulation vertex.

Assume that there is a path \(\pi\) from \(v\) to \(v'\) that does not go through \(u\). Then, when \(v\) is discovered, there is a white path from \(v\) to \(v'\), which means that \(v'\) must be a descendant of \(v\) in the DFS tree. This contradicts the fact that \(v'\) and \(v\) are siblings.

Problem 6* (Finding an Articulation Vertex). Let \(G = (V, E)\) be an undirected graph that is connected. Design an algorithm to determine whether \(G\) has any articulation vertex. Your algorithm must finish in \(O(|V| + |E|)\) time.

Solution. First grow a DFS-tree \(T\), but make sure that at each node \(u\) we record its level (the root is at level 0), denoted as \(\text{level}(u)\). We now process the vertices of \(T\) in a bottom-up manner (i.e., descending order of level). Let \(u\) be a vertex to be processed next. We do the following:

- **Case 1:** \(u\) is a leaf node: We inspect all the edges \(\{u, v\}\) of \(u\), and obtain:
 \[
 \text{highest-back-level}(u) = \min_{\{u, v\}} \text{level}(v).
 \]

- **Case 2:** \(u\) is an internal node but not the root: Let \(v_1, v_2, \ldots, v_t\) be its children (which have already been processed). If
 \[
 \max_{i=1}^t \text{highest-back-level}(v_i) \geq \text{level}(u)
 \]
 we report \(u\) as an articulation vertex, and finish.

 Otherwise, inspect all the edges \(\{u, v\}\) of \(u\), and obtain:
 \[
 \text{highest-back-level}(u) = \min_{\{u, v\}} \text{level}(v).
 \]

 Then, update \(\text{highest-back-level}(u)\) to be:
 \[
 \min \left\{ \text{highest-back-level}(u), \min_{i=1}^t \text{highest-back-level}(v_i) \right\}.
 \]

- **Case 3:** \(u\) is the root: Report \(u\) as an articulation vertex if it has at least 2 child nodes.

Problem 7 (The \(L\)-Ordering Lemma of the SCC Algorithm). Prove the lemma on Slide 28 of the lecture notes about strongly connected components (SCCs). Let \(S_1, S_2\) be SCCs such that there is a path from \(S_1\) to \(S_2\) in \(G^{\text{SCC}}\). In the ordering of \(L\), the earliest vertex in \(S_2\) must come before the earliest vertex in \(S_1\).

Solution. All the notations in this proof follow those defined in the lecture notes. Let \(X_1, X_2, \ldots, X_t\) be a path on \(G^{\text{SCC}}\) such that \(X_1 = S_1\) and \(X_t = S_2\). Consider the DFS performed on the reverse graph \(G^R\). Let \(v\) be the first vertex discovered among all the vertices of \(X_1 \cup X_2 \cup \ldots \cup X_t\) in this DFS. Assume without loss of generality that \(v \in S_i\) for some \(i \in [1, t]\).
Observe that regardless of the value of \(i\), at the moment right before the discovery of \(v\), there is a white path in \(G^R\) from \(v\) to all the vertices in \(X_1\). In other words, all the vertices in \(X_1\) must turn black before \(v\) in the DFS. It thus follows that all of them must turn black before the last vertex \(u\) of \(S_2\) that turns black. Therefore, \(u\) is behind all the vertices of \(S_1\) in \(L^R\), which indicates that \(u\) is before all the vertices of \(S_1\) in \(L\).

Problem 8. Prove that for any directed graph \(G = (V, E)\), the SCC decomposition is unique. Namely, there is only one way to decompose \(V\) into disjoint subsets, each of which is an SCC; and furthermore, such a decomposition always exists.

Solution. First, we prove that every vertex \(v\) must belong to some SCC \(S \subseteq V\). We can construct \(S\) as follows. Initially, \(S = \{v\}\). Repeat the following:

1. Enumerate all vertices in \(u \in V \setminus S\) to see if
 - \(u\) can reach all vertices in \(S\), and
 - every vertex in \(S\) can reach \(u\).

2. If \(u\) does not exist, done; \(S\) is an SCC containing \(v\).

3. Otherwise, add \(u\) to \(S\), and repeat from Step 1.

Second, we prove that, for every vertex \(v \in V\), there is a unique SCC containing \(v\). This follows directly from the fact that no two distinct SCCs can have non-empty intersection (we proved this fact during the class).

We now conclude that the SCC decomposition is unique.