Problem 1 (50%). Calculate the following for \(a = [-1, 2, -3] \), and \(b = [3, -2, 1] \).

1. \(a + b \)
2. \(a - b \)
3. \(a \cdot b \)
4. \(a \times b \)
5. \(|a|\)

Answer:

1. \(a + b = [2, 0, -2] \)
2. \(a - b = [-4, 4, -4] \)
3. \(a \cdot b = -3 - 4 - 3 = -10 \)
4. \(a \times b = [-4, -8, -4] \)
5. \(|a| = \sqrt{14} \)

Problem 2 (20%). In the figure below, the directed segment \(\overrightarrow{PA} \) is an instantiation of vector \([1, 1]\), and \(\overrightarrow{PB} \) is an instantiation of vector \([3, 2]\). Let \(\overrightarrow{AB} \) be an instantiation of vector \(\mathbf{v} \). What is \(\mathbf{v} \)?

![Diagram](image)

Answer: \([3, 2] - [1, 1] = [2, 1] \).

Problem 3 (20%). As in Problem 2, \(\overrightarrow{PA} \) is an instantiation of vector \([1, 1]\), and \(\overrightarrow{PB} \) is an instantiation of vector \([3, 2]\). Let \(D \) be the projection of point \(A \) onto \(\overrightarrow{PB} \). What is the distance from \(P \) to \(D \)?
Answer: Let γ be the angle of $\overrightarrow{P,A}$ and $\overrightarrow{P,B}$. Hence, $\|1,1\|\|3,2\| \cos \gamma = [1,1] \cdot [3,2] = 5$. The distance from P to D is exactly $|\overrightarrow{P,A}| \cos \gamma = |1,1| \cos \gamma = \frac{5}{\sqrt{13}} = \frac{5}{\sqrt{13}}$.

Problem 4 (10%). Define function $r(t) = [t, t^2, t^3]$. What is the value of $r'(1)$?

Answer: $r'(t) = [1, 2t, 3t^2]$. Hence, $r'(1) = [1, 2, 3]$.

\[\text{Answer: } r'(1) = [1, 2, 3]. \]